

OCTG Service Handbook

DECEMBER 2022 UNCONTROLLED WHEN PRINTED

Table of Contents

1	Intro	oduction to JFE Premium Connections	4
2	JFE	Connection Design Features	6
	2.1	JFELION	6
	2.2	JFETIGER	6
	2.3	JFEBEAR	6
	2.4	FOX	7
~	2.5	JFECUBRA	1
3	Alte	rnative JFE Connection Options	8
	3.1	100% & 101% Tensile Efficient (TE) Coupling	8
	3.2	45° Standard Chamfer & 20° Optional Bevel Options	8
	3.3	Special clearance options	8 8
	3.5	Internal Plastic Coating Guidelines	g
	3.6	Non-standard Products	9
	3.7	Maximum Torque with Sealability	9
	3.8	Fatigue Life Performance	9
	3.9	JFE Clear-Run Product Guide	10
4	Pipe	Storage & Handling	1
	4.1	General Storage in Yard	11
	4.2	General Storage at Rig Site	11
	4.3	High Chrome/CRA Handling Guidelines	11
	4.4	Storage & Handling of Tubulars in JFE-PACK	12
_	4.5	JFE-PACK Assembly Procedure	14
- L-	Intor	chongoobility ()	
Э	IIIC		2
Э	5.1	JFELION 2	22
Э	5.1 5.2	JFELION 2 JFETIGER, JFEBEAR & FOX 2	22 24 25
5	5.1 5.2 5.3	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 JECOBRA 2	22 24 25
э 6	5.1 5.2 5.3 Field	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 I Inspection, Repair & End Finishing 2	22 24 25 26
5	5.1 5.2 5.3 Field 6.1	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2	22 24 25 26 26
6	5.1 5.2 5.3 Field 6.1 6.2 6.3	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 d Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2 Connection End Finish Information 2	22 24 25 26 26 27 33
5 6 7	5.1 5.2 5.3 Field 6.1 6.2 6.3 Three	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 d Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2 Connection End Finish Information 3 Read Compounds 3	222 224 225 226 226 227 333
5 6 7	5.1 5.2 5.3 Field 6.1 6.2 6.3 Three 71	JFELION 2 JFETIGER, JFEBEAR & FOX 3 JFECOBRA 2 d Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2 Connection End Finish Information 3 ead Compounds	22 24 25 26 27 33 6 36
5 6 7	5.1 5.2 5.3 Field 6.1 6.2 6.3 Three 7.1 7.2	JFELION 2 JFETIGER, JFEBEAR & FOX 3 JFECOBRA 2 Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2 Connection End Finish Information 3 Approved thread compounds 4 Application of thread compound 4	22 24 25 26 27 33 6 36 36 37
5 6 7	5.1 5.2 5.3 Field 6.1 6.2 6.3 Thre 7.1 7.2 7.3	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 d Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2 Connection End Finish Information 3 Approved thread compounds 3 Application of thread compound 3 Application of Clear-Glide (Clear-Run) 3	22 24 25 26 27 33 6 36 37 38
5 6 7 8	5.1 5.2 5.3 Field 6.1 6.2 6.3 Thre 7.1 7.2 7.3 Pre	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 d Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2 Connection End Finish Information 3 Approved thread compounds 3 Application of thread compound 3 Application of Clear-Glide (Clear-Run) 3	22 24 25 26 27 33 36 37 38 30
5 6 7 8	5.1 5.2 5.3 Field 6.1 6.2 6.3 Thre 7.1 7.2 7.3 Pre 8.1	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 d Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2 Connection End Finish Information 3 Approved thread compounds 3 Application of thread compound 3 Application of Clear-Gilde (Clear-Run) 3 Running 4 Horizontal Connection Make-up 4	22 24 25 26 27 33 36 37 38 40
5 6 7 8	5.1 5.2 5.3 Field 6.1 6.2 6.3 Three 7.1 7.2 7.3 Pre 8.1 8.2	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 d Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2 Connection End Finish Information 3 Approved thread compounds 3 Application of thread compound 2 Application of Clear-Glide (Clear-Run) 3 Running 4 Horizontal Connection Make-up 4 Recommended Checks 4	22 24 25 26 27 33 36 37 38 40 41
5 6 7 8	5.1 5.2 5.3 Field 6.1 6.2 6.3 Thre 7.1 7.2 7.3 Pre 8.1 8.2 8.3	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 d Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2 Connection End Finish Information 3 Approved thread compounds 3 Application of thread compound 3 Application of Clear-Glide (Clear-Run) 3 Running 4 Horizontal Connection Make-up 4 Prifting 4	22 24 25 26 27 33 36 37 38 40 41 43
5 6 7 8 9	5.1 5.2 5.3 Field 6.1 6.2 6.3 Thre 7.1 7.2 7.3 Pre l 8.1 8.2 8.3 Run	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 d Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2 Connection End Finish Information 3 Approved thread compounds 3 Application of thread compound 2 Application of Clear-Glide (Clear-Run) 3 Running 4 Horizontal Connection Make-up 4 Recommended Checks 4 Drifting 4	22 24 25 26 27 33 36 37 38 40 41 43 44
5 6 7 8 9	5.1 5.2 5.3 Field 6.1 6.2 6.3 Thre 7.1 7.2 7.3 Pre 8.1 8.2 8.3 Run 9.1	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 d Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2 Connection End Finish Information 3 Approved thread compounds 3 Application of thread compound 3 Application of Clear-Glide (Clear-Run) 3 Running 4 Horizontal Connection Make-up 4 Recommended Checks 4 Drifting 4 Guidelines 4	22 24 25 26 27 33 36 37 38 40 41 43 44
5 6 7 8 9	5.1 5.2 5.3 Field 6.1 6.2 6.3 Three 7.1 7.2 7.3 Pre l 8.1 8.2 8.3 Runn 9.1 9.2	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 d Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2 Connection End Finish Information 3 Approved thread compounds 3 Application of thread compound 3 Application of Clear-Glide (Clear-Run) 4 Horizontal Connection Make-up 4 Recommended Checks 4 Drifting 4 Guidelines 4 Running Linformation 4 Guidelines 4 Running Dual Completions 4	22 24 25 26 27 33 36 37 38 40 41 43 44 44 44
5 6 7 8 9	5.1 5.2 5.3 Field 6.1 6.2 6.3 Three 7.1 7.2 7.3 Pre 1 8.1 8.2 8.3 Rum 9.1 9.2 9.3	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 d Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2 Connection End Finish Information 3 Approved thread compounds 3 Application of thread compound 3 Application of Clear-Glide (Clear-Run) 4 Horizontal Connection Make-up 4 Recommended Checks 4 Drifting 4 Guidelines 4 Running Long 4 Application of Plays 4 Horizontal Connection Make-up 4 Recommended Checks 4 Drifting 4 Guidelines 4 Running Dual Completions 4 Running Pipe in Stands 4	22 24 25 26 27 33 36 37 38 40 41 43 44 46 44 46 46
5 6 7 8 9	5.1 5.2 5.3 Field 6.1 6.2 6.3 Thre 7.1 7.2 7.3 Pre 1 8.1 8.2 8.3 Rum 9.1 9.2 9.3 9.4	JFELION 2 JFETIGER, JFEBEAR & FOX 2 JFECOBRA 2 d Inspection, Repair & End Finishing 2 Tools 2 Visual Inspection Criteria & Guidelines 2 Connection End Finish Information 3 Approved thread compounds 3 Application of thread compound 2 Running 4 Horizontal Connection Make-up 4 Horizontal Connection Make-up 4 Guidelines 4 Jorifting 4 Application of threads 4 Horizontal Connection Make-up 4 Recommended Checks 4 Drifting 4 Guidelines 4 Running Dual Completions 4 Junning Dual Completions 4 JawnDie Depth Mark Information 4	22 22 24 25 26 27 33 36 37 38 40 41 43 44 46 47 46 47

10	Hydrostatic Test Fixtures
	10.1 JFELION Hydrostatic Test Fixtures 48
	10.2 JFEBEAR Hydrostatic Test Fixtures 53
11	Lifting Plugs 54
	11.1 FOX, JFEBEAR, JFETIGER, JFELION Lift Plugs 54
10	11.2 JFECUBRA LIIT Plugs 56
12	Make-up Graph Acceptance Criteria
	12.1 JFELION, JFETIGER & JFEGUBRA 58 12.2 JEEREAR 64
	12.3 FOX 70
13	Break-out & Re-running Information
	13.1 Break-out 74
	13.2 Re-running 75
14	Thread Locking Compound
	14.1 Locking Compound Information 76
	14.2 Application Procedure 76
	14.3 Torque Values 77
15	Pipe and Coupling Colour Code Information 78
	15.1 API 5CI /8
	15.3 JFE Carbon 79
	15.4 API 5CRA 79
16	JFEBEAR Make-up Torques
	JFEBEAR API 80
	Clear-Run for Chrome Grades ≥ 9%Cr 92
	Clear-Run Carbon Grades 102
	HTP CLEAR-RUN 114
17	JFETIGER Make-up Torques
18	IFELION Make-up Torques 120
10	JFELION API 120
	JFELION - Other Connections 130
19	JFECOBRA Make-up Torques
20	FOX Make-up Torques
21	Special Clearance Coupling OD Dimensions 146
	21.1 JFETIGER 146
	21.2 FOX 147
	21.3 JFEBEAR 148
00	21.4 JFELIUN 150
22	Valuable Information
	22.1 ripe Galculations 152 22.2 Field Calculations 153
	22.3 Other 154
	22.4 Common conversion factors 155

1 Introduction to JFE Premium Connections

The JFE connections detailed within this running manual book have been designed and developed by JFE Steel Corporation, Japan. All JFE connections are manufactured by JFE Steel Corporation or by authorized manufacturing licensees.

JFE has been supplying steel tubulars & premium connections into the OCTG market since the 1980's and continues to develop products to overcome the increasing complexity of Oil & Gas wells.

The information detailed within this running manual is to assist the user with a successful operation. If further information or field service is required, please visit www.jfetc.com for the contact information in your region.

This running manual is for information purpose only and JFE Steel Corporation does not accept any responsibility for any loss, damage or injury resulting from the use of the information herein. The information is then requested to be undertaken solely by the customers own risk and responsibility.

All the JFE connections detailed within this report, i.e. FOX, JFEBEAR, JFETIGER, JFELION, and JFECOBRA are all registered trademarks (™).

2 JFE Connection Design Features

2.1 JFELION

Res and the second seco

Figure 2.1.1 – Box Detail Figure 2.1.2 – Pin Detail

Delan

OD (inch) & Classification Number	Threads per Inch (TPI)
2 7/8 to 2 7/8	8
3 ½ to 5*	6
5 ½ to 9 5%	5
9 % to 14	4

*4 $1\!\!\!/ 2"$ SD 51 (21.5lb/ft & 23.7lb/ft) are 5 threads per inch

2.2 JFETIGER

OD (inch)	Threads per Inch (TPI)
7 to 9 5/8	5
9 7⁄8"	4

2.3 JFEBEAR

Figure 2.3.1 – Box Detail

Figure 2.3.2 – Pin Detail

OD (inch)	Threads per Inch (TPI)
2 ¾ to 2 ¾	8
3 ½ to 4	6
4 ½ to 9 5%	5

Figure 2.4.1 – Alloy Box Detail	Figure 2.4.2 – Carbon Box Detail	Figure 2.4.3 – Alloy & Carbon Pin Detail

OD (inch)	Threads per Inch (TPI)
2 3⁄8 to 2 7⁄8	8
3 ½ to 4	6
4 ½ to 13 3⁄8	5

2.5 JFECOBRA

2.4 FOX

Figure 2.5.1 - Box No.1 seal detail Figure 2.5.2 - Pin No.1 seal detail Figure 2.5.3 - Box No.2 seal detail Figure 2.5.4 - Pin No.2 seal detail

OD (inch)	Threads per Inch (TPI)
5 to 9 5%	6
10 1⁄8 to 13 5⁄8	5
14 to 16	4

3 Alternative JFE Connection Options

3.1 100% & 101% Tensile Efficient (TE) Coupling

For various FOX & JFEBEAR sizes, the option of a 100% & 101% tensile efficient coupling OD exists. The standard coupling OD's were based on the original connection design, however with further connection design refinement, the 100% & 101% TE options provide a slimmer coupling OD while still maintaining the full connection performance properties.

3.2 45° Standard Chamfer & 20° Optional Bevel Options

For the FOX, JFEBEAR, JFETIGER & JFELION connections, to assist with smoother running operations and reduce couplings 'hanging up', a 20 degree optional bevel option is available. If the 20 degree optional bevel is selected, it should be noted that the coupling bearing face load rating is reduced. The maximum bearing face load ratings are shown on the CDS.

3.3 Special Clearance Options

Special clearance options are available for all JFE connections (See Section 16 for further info). The special clearance options provide a further, slimmer connection OD, however this then impacts the connections yield strength and therefore the overall string tensile strength. If the coupling is special clearance, a black band will be painted adjacent to the material grade colour identification bands, plus the stencil description will include SC.

Stencil Example.

JFEBEAR™ SC80 L80-13Cr 7" 29#, where the coupling OD tensile efficiency is 80%.

3.4 GRE Liner

8

Glass Reinforced (GRE) liner is available on various sizes of FOX, JFEBEAR & JFELION connections.

3.5 Internal Plastic Coating Guidelines

Internal plastic coatings can be applied to JFE premium connections, specifically FOX, JFEBEAR, JFETIGER & JFELION. If a plastic coating exists within the tubing ID, no coating shall be applied to the thread, seal, and torque shoulder areas. The figures below show the acceptable areas for plastic coating applications on JFE premium connections.

Acceptable coating area

Unacceptable coating area

3.6 Non-standard Products

The JFELION and JFEBEAR connections offer a number of nonstandard products for various customer projects around the globe. These products will be identified as non-standard by the stencilling on the connection, e.g. JFEBEAR HT, and JFELION CBR, to list a few. For datasheets and more information with respect to these connections, please contact your local JFE-TC office.

3.7 Maximum Torque with Sealability

The Maximum Torque with Sealability (MTS) value is available for JFEBEAR and JFELION connections only. This torque value is the maximum figure the connection can be assembled to while maintaining sealability.

The torque can be applied during tong make-up on the rig floor, or alternatively, during rotation downhole. If applying on the rig floor, it is recommended that all mill end couplings are torqued to the MTS value during production at the steel mill or manufacturing licensee.

For smaller diameter connections, MTS is not available due to the low margin between the current maximum torque and structural yield torque.

All MTS values can be found on the specific connection data sheets available at www.jfetc.com.

3.8 Fatigue Life Performance

Connection fatigue information is typically required for drilling with casing or riser applications. Various full scale fatigue testing has been performed on the

connection product line offered by JFE Steel Corporation.

For more information on specific connection fatigue life, please contact your local JFE-TC office.

3.9 JFE Clear-Run Product Guide

JFE Clear-Run is an environmentally friendly running system which is available on JFEBEAR, JFETIGER and JFELION. Clear Glide is the primary component of the Clear-Run system which offers excellent long-term corrosion and galling resistance, therefore allowing products to arrive at the rig site in a ready to run condition. Clear Glide has a yellow OSPAR rating.

End finishing of pin and box connections for the JFE Clear Run system is critical where Clear-Plate (a proprietary electroplating technology) must be applied to chrome alloy boxes to ensure successful make-ups.

See section 6.3 for the JFE Clear Run end finish requirements.

The following table describes where Clear-Glide can be purchased and Clear-Plate can be applied.

Clear-Glide Stockists	Licensed Clear-Plate Facilities
GB Premium Services (USA) Beattie (Canada)	MP Eastern Limited (UK) S&S Plating (USA)
MITE (Europe)	Guerrero Plating Technology (USA)
	Isiziz Plating Co. Ltd (Japan)
	Iwase Plating Co. Ltd (Japan)

4 Pipe Storage & Handling

4.1 General Storage in Yard

It is recommended that upon receipt of tubular goods, remove from the export packing and store in an indoor, dry atmosphere if possible. 13Cr tubulars should be inspected immediately after arrival to ensure no water contamination exists which can cause corrosion during storage. The following points should be adhered to for the storage of tubular goods:

- 1 Grades 13Cr or above are generally kept in wrap type systems
- 2 Store pipes at least 18inches above ground level to prevent contamination
- 3 Rest pipe on supports, adequately spaced to prevent bending of the pipe
- 4 Hardwood strips/dunnage to be present between layers of pipe so no weight is applied to couplings
- 5 It is recommended for chromium tubulars, especially 13Cr, that hardwood strips/dunnage be lined with plastic or rubber to avoid direct contact with the tubulars. This will prevent potential pitting
- 6 Bumper rings can also be utilised to avoid metal contact
- 7 Pipe should not be stacked higher than 10ft
- 8 Pipe & connections should be inspected periodically, i.e. every 1 to 3 months
- 9 During inspection the protectors are likely to be removed, therefore once inspection is completed ensure storage compound provides 100% coverage of connection prior to reinstallation of protector

4.2 General Storage at Rig Site

Before transferring the pipe to the pipe deck, it is recommended to inspect the area and ensure the correct materials i.e. dunnage is available before the operation begins. The following points are also recommended for storage at the rig site for all steel grades:

- 1 Hardwood should be placed on top of the deck beams before the first lot of pipe is laid down
- 2 Between each pipe layer, at least two rows of hard wooden spacers should exist, perpendicular to pipe length to avoid bending during storage, pipe OD contact, and ease of inspection
- 3 Keep protectors fitted during storage to avoid damage to the connections
- 4 Storage compound should be applied to the connection to avoid corrosion if pipe is not rig prepped

4.3 High Chrome/CRA Handling Guidelines

- 1 Handle joints individually using nylon slings (recommended). Do not use metal wire rope
- 2 Avoid rough handling i.e. colliding joints together, as this can result in localised work hardening
- 3 In the case of threading, padded pipe tables, padded forks and non-steel drifts should be utilised
- 4 If storing for long periods, indoor storage is recommended
- 5 Low stress/non marking dies should be utilised for tongs, slips & elevators when running high chrome tubulars

4.4 Storage & Handling of Tubulars in JFE-PACK

The following steps are recommended when handling pipe contained within the JFE-PACK system:

 Lift the JFE-PACK system by crane or forklift as shown in the following images

Correct Forklfit Handling Practice

Crane with nylon slings

- · Ensure slings are positioned on the pipe body, not the packaging
- Ensure JFE-PACK is lifted vertically to eliminate any possible damage due to impact

The following steps are recommended storing pipe contained within the JFE-PACK system:

- When stacking JFE-PACKS, place hardwood strips/dunnage with minimum size 105mm x 105mm x required length between each pack to ensure packs do not get damaged
- Maximum height should be no more than 10ft (2.1m) high, a maximum of 4 packs
- Storage racks should be high enough to avoid contact with the ground and have sufficient runners to prevent pipe from sagging (min. 3 runners for R3)
- Rack pipes at least 18" (457 mm) above ground. If the area where pipe is being stored is prone to flooding, then the height from ground should be increased accordingly. JFE do not recommend laying the JFE-PACK or pipe directly on the ground.

JFE-PACK with appropriate support and hardwood/dunnage

JFE-PACK stored at correct height above ground

4.5 JFE-PACK Assembly Procedure

This section details the equipment, tooling and assembly instructions for the JFE-PACK which is used to transport pipe from the JFE Steel mill to the customer's yard and/or rig site.

The JFE-PACK is a proprietary composite type packaging system offered by JFE Steel to avoid metal to metal pipe contact during transportation and storage.

For further information regarding the packing technology, please contact info@jfetc.com

All the preparation, packing and handling steps detailed within this document are to ensure optimum performance of the JFE-PACK. JFE Steel Corporation does not accept any responsibility for any loss, damage or injury resulting from the use of the information herein. The information is then requested to be undertaken solely by the customers own risk and responsibility.

4.5.1 Tooling and Equipment Required

Tooling	Equipment
Torque wrench	Metal banding
Metal/steel	Polypropylene sheet
banding tool	JFE-PACK nut
	JFE-PACK T-bolt/rod
	Appropriate JFE-PACK spacer
	JFE-PACK frame (bottom, middle and upper sections)

4.5.2 Packing Preparation

Prior to pipe packing, the bottom section of the JFE-PACK frame should be positioned appropriately so the pipe weight is supported equally.

The bottom section of the JFE-PACK is easily identifiable – it is the only section that has a 'hook type' fixture on each end. The hook should face down as shown in the image below.

Image 1 - Bottom section of JFE-PACK with 'hook' - positioned downwards

4.5.2-1 JFE-PACK Bottom Section Positioning Criteria (R2)

For pipe lengths 25 to 34ft, the bottom section should be positioned as shown in figure 1. The pipes to be packed should be measured to acquire the overall length, and the centre determined. Once the centre is determined, the left and right hand side bottom sections can be positioned.

Figure 1 – JFE-PACK Positioning (Only applicable for R2 lengths)

Table 1 – Example of JFE-PACK Positioning lengths for R2 lengths

A	B	C
25ft	Max 10ft	Min 2.5ft
34ft	Max 11.25ft	Min 5.75ft

4.5.2-2 JFE-PACK Bottom Section Positioning Criteria (R3)

Pipe lengths 34.1 to 48ft, the bottom section should be positioned as shown in figure 2. The pipes to be packed should be measured to acquire the overall length, and the centre determined. Once the centre is determined, the left and right hand side bottom sections can be positioned.

Figure 2 – JFE-PACK Positioning (Only applicable for R3 lengths)

Table 2 – Example of JFE-PACK Positioning lengths for R3 lengths

A	В	C
34.1ft	Max 9.5ft	Min 2.8ft
48ft	Max 11.25ft	Min 7.125ft

Lengths for B & C are adjustable, however adequate area should exist in order to assemble the polypropylene and metal banding as explained in section 5.2.

4.5.3 JFE-PACK Bottom Section Positioning Criteria (Pup Joints)

If pup joints are packed using the JFE-PACK system, only two frames shall be required. This is applicable to lengths from 2 to 10ft. The JFE-PACK sections shall be positioned at equal distances along the length of the pup joint. See the figure below for more information.

Figure 3 – JFE-PACK Positioning (Applicable for various pup joint lengths) Table 3 – JFE-PACK Positioning lengths for pup joint lengths, 2 to 10ft

4.5.4 Packing and Stacking

- Once the bottom sections of the JFE-PACK have been positioned accordingly on level ground, the pipes can be lowered onto the frame section.
- 2 Ensure that the mill ends are aligned before positioning the middle section of the JFE-PACK directly above the bottom frame section. The middle section of the JFE-PACK is shown below.

Image 2 – Middle section of JFE-PACK with two straight arms

- 3 Once the middle sections have been positioned, the next column of pipe can be lowered carefully onto the middle frame section.
- 4 Steps 2 and 3 can be repeated until the maximum number of columns has been achieved. The maximum numbers of columns are shown in table 4 on page 5.
- 5 Finally, once the stacking has been complete, the final top section should be placed directly above the uppermost middle section. The top section of the JFE-PACK is shown below.

Image 3 - Top section of JFE-PACK with flat plate and hole - facing upwards

Important note: If insufficient pipes remain to completely fill the uppermost column of the JFE-PACK, the pipes shall be positioned using figures 4 & 5 as examples - do not stack to one side.

Figure 4 – two pipes remain for upper column

Figure 5 – three pipes remain for upper column

Table 4 - Maximum pipes per row (width) and column (height)

Outer	Naminal	Max		Maximu per JF	m pieces E-PACK
Diameter	weight	nieces	Max nieces	R2	R3
(inch)	(lb./ft.)	per row	per column	3 frames	4 frames
2 3⁄8	4.6	9	8	72	63
2 3/8	5.1	9	7	63	54
2 3⁄8	5.8	9	6	54	45
2 3⁄8	6.2	9	6	54	45
2 7⁄8	6.4	7	7	49	42
2 7⁄8	7.7	7	6	42	35
2 7⁄8	8.6	7	5	35	28
3 1/2	9.2	6	6	36	30
3 1/2	10.2	6	5	30	24
3 1/2	12.7	6	4	24	18
4	13.0	5	5	25	20
4	14.8	5	5	25	20
4	16.5	5	4	20	15
4 1/2	11.6	5	5	25	25
4 1/2	12.6	5	5	25	20
4 1/2	13.5	5	5	25	20
4 1/2	15.1	5	4	20	15
5	15.0	4	4	16	16
5	18.0	4	4	16	16
5 1/2	15.5	4	4	16	16
5 1/2	17.0	4	4	16	16
5 1/2	20.0	4	4	16	12
5 1/2	23.0	4	4	16	12
6	18.8	3	3	9	9
6 5⁄8	23.3	3	3	9	9
6 5⁄8	28.0	3	3	9	9
6 5⁄8	32.0	3	3	9	9
7	26.0	3	3	9	9
7	29.0	3	3	9	9
7	32.0	3	3	9	9
7	38.0	3	3	9	6
9 5⁄8	43.5	2	2	4	4
9 5/8	53.5	2	2	4	4

4.5.5 Securing the JFE-PACK

Insert bolts and secure

 Once the frames are in the correct positions, following the instructions set out in section 4, the T-section bolt and nut (see image 4 below) should be assembled to secure the frames in place. See table 5 for required bolt lengths.

Image 4 - T-section bolt and nut

- 2 The T-section of the bolt should be positioned within the downward facing hook of the bottom JFE-PACK section and the threaded end passed through the hole of the upper JFE-PACK section.
- 3 The M16 lock nut should then be screwed onto the bolt and tightened using the torque wrench to a maximum torque of 177ft-lb. (240Nm). If this torque is exceeded, it may deform the JFE-PACK – see image below showing the T-section bolt and nut in torqued state.

nn	n			I	Number	of layer	S		
(inch)	(mm)	1	2	3	4	5	6	7	8
2 3/8	60.3	4.33	7.87	11.81	15.75	19.69	23.62	27.17	30.71
2 1/8	73.0	4.92	9.25	13.19	17.52	21.85	26.38	30.71	-
3 1/2	88.9	5.71	10.43	15.75	20.28	25.20	30.31	-	-
4	101.6	6.30	11.81	16.93	21.85	27.56	-	-	-
4 1/2	114.3	6.69	12.20	18.31	24.21	30.31	-	-	-
5	127.0	7.87	13.98	19.69	26.38	-	-	-	-
5 1/2	139.7	7.87	14.57	21.26	28.54	-	-	-	-
6	152.4	7.87	15.75	22.83	-	-	-	-	-
6 5⁄8	168.3	9.06	16.93	25.20	-	-	-	-	-
7	177.8	9.25	17.72	25.98	-	-	-	-	-
7 5⁄8	193.7	9.84	18.90	-	-	-	-	-	-
8	203.2	10.63	19.69	-	-	-	-	-	-
8 1/2	215.9	10.63	20.28	-	-	-	-	-	-
8 5/8	219.1	11.81	22.83	-	-	-	-	-	-
9 5/8	244.5	11.81	22.83	-	-	-	-	-	-

Table 5 – Bolt length table for tubing and casing (inches)

Image 5 - JFE-PACK with T-section bolt and nut in secure position

The final part of the packing process, to provide extra stiffness and secureness, is the assembly of polypropylene sheet and steel banding over the OD of the pipes.

A few important factors shall be followed when banding the pipe together:

- 1 The polypropylene sheet length should be at least 4 inch (102mm) longer than the length required to wrap around the pipe see image 6 below
- 2 The polypropylene sheet width shall be a minimum of 4.5 inch (114mm) on either side of the metal band
- 3 Edge of the polypropylene sheet shall be 8" +/- 0.5" (203mm +/- 13mm) from edge of the JFE-PACK frame
- 4 Metal band width shall be minimum 1.25" (32mm)
- 5 The distance between metal bands positioned side by side shall be within 12" (305mm)

Image 6 - polypropylene overlapping technique

Image 6 – polypropylene overlapping technique

Steel Banding Positioning Guidelines

Depending on the length of pipe, i.e. R2 or R3 and pipe outer diameter, the number of bandings required shall change. See figures 6 to 9 for more details.

Figure 6 – Applicable to R3 joints where OD is $\leq 27/8$ " (Birdseye view)

Figure 7 – Applicable to R3 joints where OD is > 2 7/8" (Birdseye view)

Figure 8 – Applicable to R2 joints where OD is $\leq 2.7/8$ " (Birdseye view)

Figure 9 – Applicable to R2 joints where OD is > 2 7/8" (Birdseye view)

Applicable to R2 joints where the uppermost column of the JFE-PACK is not full Birdseye view of **top column only**

Figure 11 – Applicable to R3 joints where the uppermost column of the JFE-PACK is not full Birdseye view of **top column only**

4.5.6 Safety Guidance for Unpacking or JFE-PACK

- Do not stand directly in front of the metal band when cutting loose. Due to the tension in the metal band, it may spring suddenly which could cause injury if the person is hit by it.
- 2 Do not attempt to pull the remaining metal band from between the pipes once cut in order to avoid injury. Wait until pipes have been lifted by appropriate method and metal bands which have fallen to the floor can then be collected.
- 3 When loosening the bolts from the JFE-PACK, perform in stages, i.e. loosen slightly on one side, followed by loosening slightly on opposite side. By performing this in stages, the person will allow for the frame to relax equally.

4.5.7 Safety Guidance for Unpacking or JFE-PACK

The following points should be adhered to when handling loaded JFE-PACK's to avoid pipe or JFE-PACK frame damage:

- 1 Handle one JFE-PACK at a time
- 2 Use a spreader bar if lifting using a crane to distribute weight appropriately and ensure nylon slings are positioned around the pipe body, not the JFE-PACK
- 3 If using a forklift, ensure the folks are lined with nylon or wood and position the forks so contact is made to the pipe body only, not the JFE-PACK
- 4 When stacking JFE-PACK's, position at least two hardwood strips/dunnage (min size: 4" x 4") on the top of each JFE-PACK to avoid damage
- 5 It is recommended for chromium (≥13%Cr) tubulars, that hardwood strips/dunnage be lined with plastic or rubber to avoid direct contact with the tubulars. This will help to lessen the potential of pitting. See JFE's handling and storage guidelines for additional information
- 6 No more than 4 to 6 (depending on pipe size) JFE-PACK's should be stacked on top of each other at any one time to avoid exceeding a height of 10ft
- 7 If loading pipe onto a heavy goods vehicle, position hardwood strips/dunnage on the bed of the vehicle at suitable positions to avoid JFE-PACK contact with HGV bed. Ensure hardwood strips do not contact with the JFE-PACK

Interchangeability 5

5.1 **JFELION**

Interchangeability rules for JFELION only apply to connections with identical SD number. If differing weights of the same diameter connection do not have the same SD number, the connections are not interchangeable.

Example: JFELION 7" 23# SD49 & 7" 29# SD49 are interchangeable. JFELION 7" 23# SD49 is not interchangeable with 7" 32# SD52. The following table details the interchangeable weights within a given size for the JFELION connection.

OD (inch)	Classifi- cation / SD No.	Lower Weight (lb/ft)	Upper Weight (Ib/ft)		OD (inch)	Classifi- cation / SD No.	Lower Weight (lb/ft)	
0.7/	SD26	6.4	6.4	1		SD49	23.0	
2 1/8	SD30	7.8	9.4	1	7	SD52	32.0	Γ
	SD29	9.2	10.2	1		SD54	38.0	Γ
3 1/2	SD35	12.7	14.8	1		SD47	26.4	Γ
4	SD35	11.6	16.1	1	7 5⁄8	SD52	33.7	Γ
	SD29	11.6	12.6	1		SD57	42.8	Γ
4.17	SD32	13.5	15.2]		SD50	36.0	Γ
4 1/2	SD35	17.0	18.9]	8 5⁄8	SD57	49.0	Γ
	SD51	21.5	23.7]		SD62	54.0	
	SD30	15.0	15.0]	0.5/	SD51	40.0	
5	SD36	18.0	21.4]	9 %	SD57	47.0	
	SD38	23.2	24.1]	9 7⁄8	SD68	62.8	
	SD41	15.5	17.0		10.27	SD56	51.0	Γ
F 1/	SD46	20.0	23.0]	10 %4	SD65	55.5	Γ
5 1/2	SD49	26.0	26.8]	10 7⁄8	SD65	72.0	Γ
	SD51	28.4	29.7]	11 ³ ⁄4	SD62	60.0	Γ
6	SD45	22.8	22.8		11 7⁄8	SD62	62.0	Ĺ
0	SD50	32.0	32.0			SD63	68.0	
6.068	SD61	32.6	32.6]	13 ¾	SD65	80.7	
	SD41	20.0	20.0			SD68	92.0	
6 1/8	SD49	24.0	32.0]	13 5⁄8	SD65	88.2	
	SD54	40.2	40.2		14	SD66	93.0	
				_	14	SD68	100.0	
					9 5/8	CBR	53.5	ſ

Rules when mixing differing weights & grades:

- The lower make-up torque of the lighter weight / lower grade ٠ connection should be used
- If pin weight is heavier, a step will extrude into pipe bore from pin
- If box weight is heavier, a step will extrude into pipe bore from box
- Couplings with differing weights may have differing OD's
- JFELION CBR, & JFELION DR ASM do not offer interchangeability with any other connections

The following tables provide examples of the rules when mixing various weights (within the given SD number) and grades for the JFELION connection.

Figure 5.1.1 - Differing Weights + Identical SD# + Identical Grades (ID step = 0.0285", applied torque is that of lighter weight)

7" Jfelion SD49	Weight	Grade	Nominal Connection ID	Minimum Field Torque	Optimum Field Torque	Maximum Field Torque
	lb/ft	ksi	inch		ft-lb	
Box	23.0	80	6.277	9900	11000	12100
Pin	29.0	80	6.220	13140	14600	16060
				Ар	plicable Torc	lue
	Step/side	e (inch)	0.0285	9900	11000	12100

Figure 5.1.2 – Identical Weights + Identical SD# + Differing Grades (No ID step, applied torque is that of lower grade)

7" Jfelion SD49	Weight	Grade	Nominal Connection ID	Minimum Field Torque	Optimum Field Torque	Maximum Field Torque
	lb/ft	ksi	inch		ft-lb	
Box	29.0	80	6.220	13140	14600	16060
Pin	29.0	95	6.220	14040	15600	17160
				Ap	plicable Toro	lue
	Step/side	e (inch)	0	13140	14600	16060

Figure 5.1.3 - Differing Weights + Identical SD# + Differing Grades (ID step: 0.0225", applied torque is that of lower weight & grade)

10.750" Jfelion SD65	Weight	Grade	Nominal Connection ID	Minimum Field Torque	Optimum Field Torque	Maximum Field Torque
	lb/ft	ksi	inch		ft-lb	
Box	65.7	95	9.716	33750	37500	41250
Pin	60.7	80	9.840	26550	29500	32450
				Ар	plicable Torc	lne
	Step/side	e (inch)	0.0285	26550	29500	32450

Note: These interchangeability rules are to be used when running tubing and casing. When assembling/ running accessories, it is recommended to contact your local JFE-TC office.

5.2 JFETIGER, JFEBEAR & FOX

- JFETIGER connections with differing weights are interchangeable within a given OD.
- JFEBEAR connections with differing weights are interchangeable within a given OD.
- FOX connections with differing weights are interchangeable within a given OD.

Rules when mixing differing weights & grades:

- The lower make-up torque of the lighter weight/ lower grade connection should be used
- If pin weight is heavier, a step will extrude into pipe bore from pin
- If box weight is heavier, a step will extrude into pipe bore from box
- · Couplings with differing weights may have differing OD's
- JFEBEAR & JFEBEAR HT are interchangeable

The following tables provide examples of the rules when mixing various weights and grades for JFEBEAR. The same rules apply for the JFETIGER and FOX connection.

Figure 5.2.1 – **Differing Weights** + Identical Grades (ID step = 0.031", applied torque is that of lighter weight)

3 ½" Jfebear	Weight	Grade	Nominal Connection ID	Minimum Field Torque	Optimum Field Torque	Maximum Field Torque
	lb/ft	ksi	inch		ft-lb	
Box	10.2	80	2.915	4040	4490	4940
Pin	12.7	80	2.853	4710	5230	5760
				Ар	plicable Toro	lue
	Step/side	e (inch)	0.031	4040	4490	4940

Figure 5.2.2 – Identical Weights + **Differing Grades** (No ID step, applied torque is that of lower grade)

3 ½" Jfebear	Weight	Grade	Nominal Connection ID	Minimum Field Torque	Optimum Field Torque	Maximum Field Torque
	lb/ft	ksi	inch		ft-lb	
Box	10.2	80	2.915	4040	4490	4940
Pin	10.2	95	2.915	4690	5210	5730
				Ар	plicable Toro	lue
	Step/side	e (inch)	0	4040	4490	4940

Figure 5.2.3 – Differing Weights + Differing Grades

(ID step = 0.042", applied torque is that of lighter weight and lower grade)

4 ½" Jfebear	Weight	Grade	Nominal Connection ID	Minimum Field Torque	Optimum Field Torque	Maximum Field Torque
	lb/ft	ksi	inch		ft-lb	
Box	15.2	95	3.852	7110	7900	8690
Pin	12.6	80	3.936	4860	5400	5940
				Ар	plicable Torc	lne
	Step/side	e (inch)	0.042	4860	5400	5940

5.3 JFECOBRA

No interchangeability options exist for the JFECOBRA connection.

6 Field Inspection, Repair & End Finishing

6.1 Tools

The following tools are commonly used but not limited to during field inspection & repair procedures:

- Depth Gauge
- Fine Tooth Triangle File
- Scotch Brite
- Emery Cloth
- Soft Stone
- Vernier Calipers
- Rotary Tools¹

$^{\rm 1}$ Rotary tools can only be used by qualified JFE field service personnel.

A selection of field repair tools are shown in the image below.

6.2 Visual Inspection Criteria & Guidelines

6.2.1 JFELION & JFETIGER Pin Visual Inspection Criteria & Guidelines

Condition: Corrosion

Zone	Criteria	Action
A, B, D	All surfaces. Pitting less than 0.004" (0.1mm) deep or minor surface corrosion	Hand repair with soft bristle (no steel wire) brush or emery cloth
	Deeper than 0.004" (0.1mm)	Cut off & re-thread
С	No pitting acceptable	If present, cut off & re-thread
	Light surface corrosion (rust)	Hand repair with scotch brite or #400 emery cloth. Do not alter seal dimension. Repair should be made in a larger area than actual surface corrosion and should move around the circumference of the seal

Condition: Burr, Tear, Ding, Mash, Scratch

Zone	Criteria	Action
A,	All surfaces. Any condi-	Hand repair with a fine triangle file;
Β,	tion which could cause	emery cloth or rotary tool ¹ . Repair should
D	galling, i.e. conditions	be made in a larger area than actual
	described greater than	effected area and should move around
	0.010" (0.3mm).	the helix of the thread. Otherwise - reject.
С	Not acceptable	If present, cut off & re-thread

Condition: Burnishing

Zone	Criteria	Action
C	Acceptable	On as-machined surfaces, burnish- ing from the thread protector may be evident. As long as this does not appear as a step, this is acceptable.

Condition: Bead Peening

Zone	Criteria	Action
A,B, C, D	Inspect for peened surface. If previously made-up, normal wear is expected and is acceptable	Bead peening is an optional end finish

Condition: Phosphate

Zone	Criteria	Action
A,B, C, D	Inspect for phosphate surface. If previously made-up, burnishing is expected and is acceptable	Phosphate is an optional end finish

6.2.2 JFELION & JFETIGER Box Visual Inspection Criteria & Guidelines

6.2.3 JFEBEAR & FOX Pin Visual Inspection Criteria & Guidelines

Condition: Corrosion

Zone	Criteria	Action
A, C	Slight imperfections and light surface corrosion, i.e. Less than 0.004" (0.1mm)	Hand repair with soft bristle (no steel wire) brush, emery cloth or scotch brite
	All other imperfec- tions deeper than 0.004" (0.1mm)	Reject or re-thread
В	No pitting acceptable	Reject or re-thread
	Light surface corrosion (rust)	Hand repair with scotch brite or #400 emery cloth. Do not alter seal dimension. Repair should be made in a larger area than actual surface corrosion and should move around the circumference of the seal
Coupling OD, ID Bore &	Pitting or corrosion less than 0.020" (0.5mm) deep	Grind to the bottom of the pit & smooth edges. Keep within product tolerances.
Bearing Face	Deeper than 0.020" (0.5mm)	Reject or re-thread

Condition: Burr, Tear, Ding, Mash, Scratch

Zone	Criteria	Action
A, C	All surfaces. Any condi- tion which could cause galling, i.e. conditions described greater than 0.010" (0.3mm)	Hand repair with a honing stone / small file; emery cloth or rotary tool ¹ . Repair should be made in a larger area than actual effected area and should move around the helix of the thread. Otherwise- reject
В	Not acceptable	Reject or re-thread

Condition: Manganese phosphate

Zone Criteria		Action
A, B, C	Must be present. Inspect for medium grey surface color. If previously made-up, normal wear is expected and is acceptable	Manganese phosphate if not present, reject, or re phosphate

Condition: Copper-plate and Clear-Plate™

Zone	Criteria	Action
A, B, C,	Inspect the electroplated surface. Oxida- tion or discolouration of the plated surface is acceptable. If previously made-up, normal wear is expected and acceptable. Any delamination of plating is cause for reject	If holiday/delam- ination exists, reject or re-plate

Condition: Corrosion

Zone	Criteria	Action
A, B, C, E	All surfaces.Pitting less than 0.004" (0.1mm) deep or mi- nor surface corrosion	Hand repair with soft bristle (no steel wire) brush or emery cloth
	Deeper than 0.004" (0.1mm)	Cut off & re-thread
D	No pitting acceptable	If present, cut off & re-thread
	Light surface corrosion (rust)	Hand repair with scotch brite or #400 emery cloth. Do not alter seal dimension. Repair should be made in a larger area than actual surface corrosion and should move around the circumference of the seal

Condition: Burr, Tear, Ding, Mash, Scratch

Zone	Criteria	Action
A, B, C, E	All surfaces. Any condi- tion which could cause galling, i.e. conditions described greater than 0.010" (0.3mm)	Hand repair with a fine triangle file; emery cloth or rotary tool ¹ . Repair should be made in a larger area than actual effected area and should move around the helix of the thread. Otherwise - reject.
D	Not acceptable	If present, cut off & re-thread

Condition: Bead peening on carbon steel ($\leq 4 \ 1/2$ ") and high chrome steel

Zone	Criteria	Action
A, B,	Inspect for peened surface. If previously made-	Bead peen if
C, D, E	up, normal wear is expected and is acceptable	not present

6.2.4 JFEBEAR & FOX Box Visual Inspection Criteria & Guidelines

Condition: Corrosion

Zone	Criteria	Action
A, B, C, E	Slight imperfections and light surface corrosion, i.e. Less than 0.004" (0.1mm)	Hand repair with soft bristle (no steel wire) brush, emery cloth or scotch brite
	All other imperfec- tions deeper than 0.004" (0.1mm)	Reject or re-thread
D	No pitting acceptable	Reject or re-thread
	Light surface corrosion (rust)	Hand repair with scotch brite or #400 emery cloth. Do not alter seal dimension. Repair should be made in a larger area than actual surface corrosion and should move around the circumference of the seal
Coupling OD, ID Bore &	Pitting or corrosion less than 0.020" (0.5mm) deep	Grind to the bottom of the pit & smooth edges. Keep within product tolerances.
Bearing Face	Deeper than 0.020" (0.5mm)	Reject or re-thread

Condition: Burr, Tear, Ding, Mash, Scratch

Zone	Criteria	Action
A, B, C, E	All surfaces. Any condi- tion which could cause galling, ie. conditions described greater than 0.010" (0.3mm)	Hand repair with a fine triangle file or emery cloth. Repair should be made in a larger area than actual effected area and should move around the helix of the thread. Otherwise - reject.
D	Not acceptable	If present, cut off & re-thread

Condition: Manganese phosphate

Zone	Criteria	Action
A, B, C, D, E	Must be present. Inspect for medium grey surface colour. If previously made-up, nor- mal wear is expected and is acceptable	Manganese phosphate if not present, reject, or re phosphate

Condition: Copper-plate and Clear-Plate™

Zone	Criteria	Action
A, B, C, D, E	Inspect the electroplated surface. Oxidation or discolouration of the plated surface is acceptable. If previously made-up, normal wear is expected and acceptable. Any de- lamination of plating is cause for reject	If holiday/ delamination exists, reject or re-plate

30

6.2.5 JFECOBRA Pin Visual Inspection Criteria and Guidelines

Condition: Corrosion

Zone	Criteria	Action
B&D	No pitting acceptable	If present, then cut off & re-thread.
	Light surface corrosion (Rust)	Hand repair with Scotch Brite or #400 emery cloth DO NOT ALTER SEAL DIMENSION. Repair should be made in a larger area than actual surface corrosion and should move around the circumfer-ence of seal.
A&C	All surfaces. Pitting less than 0.004" (0.1mm) deep or minor surface corrosion.	Hand repair with soft bristle (no steel wire) brush or emery cloth
	Deeper than 0.004" (0.1mm)	Cut off & re-thread

Condition: Burr, Tear, Ding, Mash, Scratch

Zone	Criteria	Action
A & C	All surfaces. Any condition which could cause galling, i.e., conditions described greater than 0.01" (0.3mm)	Hand repair with a fine triangle file, em- ery cloth, or rotary tools ² . Repair should be made in a larger area than actual effected area and should move around the diameter of thread. Otherwise reject.
B&D	Not acceptable	If present, cut off & re-thread

Condition: Burnishing

Zone	Criteria	Action
A, B, C D	Acceptable	Burnishing from the thread protec- tor or previous make-up may be evident. As long as this does not appear as a step, it is acceptable.

Condition: Phosphate (Sizes \geq 7 5/8" OD)

Zone	Criteria	Action
A, B, C, D	Inspect for phosphated surface. If previously made up some burnish- ing is expected and acceptable	Phosphate if not pres- ent, otherwise reject

 $^{\rm 2}$ Rotary tool is allowed for use by JFE or JFE trained representative

Condition: Corrosion

Zone	Criteria	Action
B & D	Slight imperfections and light surface corrosion, i.e., less than 0.004" (0.1mm)	Hand repair with soft bristle (no steel wire), emery cloth or Scotch Brite
	All other imperfec- tions deeper than 0.004" (0.1mm)	Reject or re-thread
A & C	No pitting acceptable	Reject or re-thread
	Light surface corrosion (Rust)	Hand repair with Scotch Brite or #400 emery cloth D0 NOT ALTER SEAL DIMENSION. Repair should be made in a larger area than actual surface corrosion and should move around the circumference of seal.
Connection O.D. & Pipe ID	Pitting or corrosion Less than 0.005" (0.127mm) deep	Grind to the bottom of the pit & smooth edges. Keep within product tolerances
	Deeper than 0.005" (0.127mm)	Reject or re-thread

Condition: Burr, Tear, Ding, Mash, Scratch

Zone	Criteria	Action
B & D	Any condition which could cause galling, i.e., conditions described greater than 0.01" (0.3mm)	Hand repair with a fine triangle file, em- ery cloth, or rotary tools ³ . Repair should be made in a larger area than actual effected area and should move around the diameter of thread. Otherwise reject.
A & C	Not acceptable	If present, cut off & re-thread

Condition: Burnishing

Zone	Criteria	Action
A, B, C, D	Acceptable	Burnishing from the thread protector or previous make-up may be evident. As long as this does not appear as a step, it is acceptable

Condition: Bead Blasting

Zone	Criteria	Action
A, B, C	Must be present. Inspect for medium gray surface color. If previously made up some normal wear is expected and acceptable	Bead Blast if not present, otherwise reject

³ Rotary tool is allowed for use by JFE or JFE trained representative

6.3 Connection End Finish Information

6.3.1 JFETIGER Connection End Finish Information

OD (inch)	High Chrome¹ Steel Pin End Finish	High Chrome¹ Steel Box End Finish	Carbon Steel Pin End Finish	Carbon Steel Box End Finish
All	Bead Blast Mill & Field End	Clear-Plate ^{™2}	Bead Blast Mill & Field End	Manganese Phosphate or Clear-Plate ^{™3}

Note¹ - Definition of high chrome steel: Containing $\ge 9\%$ Cr

Note² - Copper-plate is applicable to accessories, however dry lubricant spray containing Molybdenum disulphide shall be sprayed over the seal and shoulder area for anti-galling. This shall be approved by JFE-TC prior to make-up.

Note³ - Clear-Plate[™] is mandatory when being used within the Clear Run[™] system and blasting is not required prior to Clear-Plate. API modified can also be used in conjunction with Clear-Plate[™] where there will be no change to the friction factor (FF).

An example of a JFEBEAR coupling where Clear-Plate[™] has been applied as the end finish

6.3.2 JFELION Connection End Finish Information

		Weight (lb/ft)				End Finish		
OD (inch)	Classi- fication	Lower	Upper	High Chrome ¹ Steel Pin	9 to 13% Chrome Box	15% Chrome and above Box	Carbon Steel Pin	Carbon Steel Box
. ,	SD26	64	6.4					
2 1⁄8	SD30	7.8	9.4					
	5000	0.2	10.2					
3 1⁄2	0025	10.7	14.2					
	0000	12.7	14.5			Copper or		
4	5035	11.0	10.1			Clear-Plate		
	5029	11.0	12.0					
4 1⁄2	5032	13.5	10.2					
	SD35	17.0	18.9					
	SD51	21.5	23.7					
_	SD30	15.0	15.0		Copper or		Bead blast	
5	SD36	18.0	21.4		Clear-Plate		mill and	
	SD38	23.2	24.1	-			field end	
	SD41	17.0	17.0					
5 1/2	SD46	20.0	23.0					
	SD49	26.0	26.8					
	SD51	28.4	29.7					
6	SD45	22.8	22.8					
	SD50	32.0	32.0					
6.068	SD61	32.6	32.6					
	SD41	20.0	20.0					
6 ⁵ /8	SD49	24.0	32.0					
	SD54	40.2	40.2					
	SD49	23.0	29.0	1				1
7	SD52	32.0	35.0	1				
	SD54	38.0	42.7	1		Couplings:		
	SD47	26.4	29.7			Clear-Plate		Manganese
7 5/8	SD52	33.7	39.0	Bead				Phosphate or Coppor
	SD57	42.8	42.8	blast mill		Accsess-		ol Copper-
	SD50	36.0	44.0	and field		Ories:		plating
R 5%	SD57	10.0	52.0	end ²		Clear-Plate		
0 / 0	SD62	54.0	57.4		Couplings:	plate 2		
	SD51	40.0	13.5		Clear-Plate	piate -		
9 5/8	9057	47.0	50.4				Nono3	
0.74	0007	47.0	60.0		Accsess-		NOLIG	
9 78	0050	02.0	00.9		ories:			
10 ¾	0000	51.0	31.0	1	Clear-Plate			
10.7/	0005	35.5	13.2	-	or Copper-			
IU 1/8	5065	12.0	72.0	-	piate 2			
11 3/4	5062	0.00	/1.0	-				
11 1/8	SD62	62.0	/1.8					
	SD63	68.0	//.0					
13 3⁄8	SD65	80.7	86.0					
	SD68	92.0	92.0					
13 5⁄8	SD65	88.2	88.2					
	SD66	93.0	93.0				Bead blast	
14	SD68	100.0	115.0				mill and field end	
9 5⁄8	CBR	53.5	53.5		Copper- plate ²		None ³	
10 3⁄4	DR ASM	-	-	-				-
6 5⁄8	DR PB	28.0	28.0			Clear-Plate	Bead blast mill and field end	
7 5⁄8	DR PB	39.0	39.0	-	Clear-Plate		None ³	
10 1⁄8	DRSS	79.3	79.3				Bead blast mill and field end	Clear-Plate or MN Phosphate

Note¹ Definition of high chrome steel: Containing ≥ 9%Cr

 $Note^2$ Molybdenum disulphide shall be applied to seal and shoulder area if the box being used is copper-plated – this is applicable to sizes 7" to 14" only

Note³ Optional end finishing can be applied, e.g. zinc phosphate or blasting is acceptable

6.3.3 JFELION Clear Run End Finishing Requirements

OD (inch)	High Chrome¹ Steel Pin End Finish	High Chrome¹ Steel Box End Finish	Carbon Steel Pin End Finish	Carbon Steel Box End Finish	
2 1⁄8" to 3 1⁄2"	Bead blast mill and field end		Bead blast mill and	Manganese	
4 ½" (up to 18.9#) to 5"	None	Clear-Plate	field end	phosphate	
4 ½" (21.5 & 23.7#) to 5 ½"	None		None		
7" (29 & 32#)	Not applicable	Not applicable	Bead blast mill and field end	Clear-Plate	

6.3.4 JFEBEAR Standard End Finishing Requirements

OD (inch)	High Chrome ¹ Steel Pin End Finish	High Chrome ¹ Steel Box End Finish	Carbon Steel Pin End Finish	Carbon Steel Box End Finish
2 3⁄8 - 4 1⁄2	Bead Blast	Copper-Plate	Bead Blast Mill & Field End	Manganese
5 - 9 5⁄8	Mill & Field End	or Clear- Plate™	Bare or Bead Blast Mill & Field End	Phosphate or Clear-Plate™

6.3.5 JFEBEAR Clear Run End Finishing Requirements

OD (inch)	High Chrome ¹ Steel Pin End Finish	High Chrome ¹ Steel Box End Finish	Carbon Steel Pin End Finish	Carbon Steel Box End Finish
2 3⁄8 - 6 5⁄8	Bead Blast		Bead Blast Mill & Field End	Manganese Phosphate
7 - 9 5/8	Mill & Field End	Clear-Plate™	Bare or Bead Blast Mill & Field End	Clear-Plate™
7 HTP	Not applicable		Bead Blast Mill & Field End	

6.3.6 Fox End Finishing Requirements

0.03 in	High Chrome ¹ Steel Pin End Finish	High Chrome ¹ Steel Box End Finish	Carbon Steel Pin End Finish	Carbon Steel Box End Finish
All	Bare (Mill end) and Bead Blast (Field end) or Bead Blast both Mill and Field End	Copper-plate or Clear- Plate™	Bare as Minimum Requirement or Phosphate or Bead Blast	Manganese Phosphate as Minimum or Copper-plate

6.3.7 JFECOBRA Finishing Requirements

OD(")	Carbon Steel Pin End Finish	Carbon Steel Box End Finish
5" to 5 ½"	Bead Peening ²	
7 5⁄8" to 16"	Bead Peening followed by zinc or manganese phosphate	Bead Peening ²

Note¹ - Definition of high chrome steel: Containing \geq 9%Cr Note² - Option to zinc or manganese phosphate as alternative to bead peening

7 Thread Compounds

7.1 Approved thread compounds

API Modified thread compounds in compliance with API RP 5A3 Annex A may be used on JFE premium connections. Different names are given to API modified depending on the manufacturer.

- API Modified
- API High Pressure Modified
- API Modified HP/HT

JFE does not recommend the use of thread compounds containing PTFE (Teflon®).

List of Approved Thread Compounds but not limited to:

Connection	Classification	API Modified	BOL 72733	Jet-Lube API Modified HP	Weatherford Lube Seal
	Carbon	 Image: A set of the set of the	 ✓ 	 Image: A set of the set of the	 Image: A set of the set of the
F0X [®]	9Cr to 17Cr	 Image: A set of the set of the	 	 Image: A set of the set of the	✓
	CRA	 Image: A set of the set of the	 	 Image: A set of the set of the	✓
	Carbon	 Image: A set of the set of the	 Image: A set of the set of the	 Image: A set of the set of the	✓
JFEBEAR [®]	9Cr to 17Cr	 Image: A set of the set of the	 ✓ 	 Image: A set of the set of the	✓
	CRA	\checkmark	 ✓ 	 Image: A set of the set of the	 ✓
	Carbon	 Image: A set of the set of the	 ✓ 	 Image: A set of the set of the	 ✓
JFETIGER®	9Cr to 17Cr	 Image: A set of the set of the	 ✓ 	 Image: A set of the set of the	 ✓
	CRA	 Image: A second s	 ✓ 	 Image: A set of the set of the	
	Carbon	 Image: A set of the set of the	 ✓ 	 Image: A set of the set of the	
JFELION [®]	9Cr to 17Cr	 Image: A set of the set of the	 ✓ 	 Image: A set of the set of the	
	CRA	 Image: A set of the set of the	 ✓ 	 Image: A set of the set of the	 Image: A set of the set of the

Connection	Classification	BOL 4010NM	TOPCO Green Seal II	Clear-Glide™ [1]
	Carbon	 ✓ 	×	✓
F0X [®]	9Cr to 17Cr	≤5.5" [6]	×	 ✓
	CRA	≤5.5" [6]	×	 ✓
JFEBEAR®	Carbon	✓	×	 ✓
	9Cr to 17Cr	≤5.5" [6]	×	 ✓
	CRA	≤5.5" [6]	×	✓
	Carbon	 Image: A set of the set of the	×	[3]
JFETIGER®	9Cr to 17Cr	[6]	×	[3]
	CRA	[6]	×	[3]
	Carbon	≤5.5" [4] [5]	[2]	[3]
JFELION [®]	9Cr to 17Cr	≤5.5" [6]	×	[3]
	CBA	<5.5" [6]	×	[3]

[1] Clear-Glide™ is to be used only with Clear-Run™ prepared tubulars, i.e. when the proper end finishing is applied.

[2] For use in geothermal well applications.

[3] Contact your local JFETC office for further information.

[4] BOL 4010NM can be applied to sizes larger than 5.5" with as

machined pins if Clear-Plate™ is applied to the coupling/box.

[5] BOL 4010NM can be applied to sizes larger than 5.5" with Mn phosphate on the couplings, if the pin ends are abrasive blasted in accordance with JFE specifications.
[6] BOL 4010NM can be applied to sizes larger than 5.5" if Clear-Plate™ is applied to the coupling/box.

JFE continues to evaluate the use of thread compounds, it is recommended to contact your nearest JFE-TC office for further information if alternative compounds are required. Please continuously refer to www.jfetc.com for the most updated list and technical data.

This table is for information purpose only.

7.2 Application of thread compound

A thin, even coat of approved thread compound should be applied to the pin and box so the entire seal and thread areas are fully covered and the profiles are discernible.

Before application, ensure the connections are thoroughly cleaned and dried and the thread compound has been stirred to obtain a homogenous consistency.

Application of the thread compound should be performed with a nonmetallic soft bristle moustache brush as shown in Fig 9.1 or similar.

The pictures below show a few examples of poor and good doping practises.

★ Too little thread compound applied ★ Excessive thread compound applied

✓ Correct amount of thread compound applied

✓ Correct amount of thread compound applied

7.3 Application of Clear-Glide (Clear-Run)

A thin, even coat of Clear Glide should be applied to the pin and box thread and seal areas to achieve a semi-transparent appearance where the profiles are discernible and inspection through the Clear Glide is possible.

Before application, ensure the connections are thoroughly cleaned and dried.

Application of the Clear Glide should be performed with a nonmetallic moustache brush as shown in figure 9.1 or similar.

The pictures below show a few examples of poor and good Clear Glide applications.

★ Too little thread compound applied ★ Excessive thread compound applied

★ Too little thread compound applied

✓ Correct amount of thread compound applied

8 Pre Running

8.1 Horizontal Connection Make-up

A number of accessories will usually be assembled onshore in workshops prior to shipment to the rig site. The information detailed within this section is intended to assist the onshore make-up operations to ensure a smooth and successful operation. This is applicable to all JFE premium connections.

8.1.1 Equipment required

- Uncontaminated thread compound that has been thoroughly stirred prior to application (see section 7 for approved compounds)
- Uncontaminated non-metallic, soft bristle brush or moustache brush as shown in figure 9.1 for compound application
- Appropriate sized horizontal power tong with suitable load cell, i.e. a 50kft-lb power tong is usually unsuitable for a makeup torque of 2,000ft-lb. The torque turn monitoring system should have the ability to record 1,000 data points per turn
- Ensure the horizontal power tong Tailstock/backup and headstock/tong have the appropriate sizes dies to ensure an even gripping pressure around the circumference of the pin and box accessories
- The horizontal power tong should have sufficient torque capacity in the event a break-out is required. Typically, break-out is 20% greater than the make-up torque
- Obtain the correct mill end make-up torque from the relevant technical specification (JFE-TP-J-101) or www.jfetc.com
- The mill end optimum make-up torque is the average of the field optimum torque and maximum torque

8.1.2 Certification

Ensure the horizontal power tong is within calibration. Calibration intervals should be no greater than 6 months.

Power Tong Calibration Interval

Assembly shops/JFE licensees:

≤ 12 months

Tubular running service company (offshore/onshore): ≤ 6 months

8.1.3 Procedure

- Ensure the pin and box connections are cleaned and dried thoroughly, followed by a visual inspection
- Check section 6.3 to determine whether Molybdenum Disulphide should be applied to the pin and box seal and shoulder areas. If yes, apply uniformly and ensure it dries before dope application
- Next, apply a thin even coat of the approved thread compound (see section 7.2) to both pin and box
- Screw on coupling/accessory to the pin or vice versa and tighten to the hand tight position. A strap wrench or chain tong can be used to assist with this operation
- Position the horizontal tailstock and headstock around the assembly and grip in appropriate areas. Note: An anti-deformation plug is recommended for the box field end if gripping over this area. Note 2: Recommend to use spirit level to ensure proper alignment is achieved.
- Make-up the connection using the appropriate torque figures (<u>www.jfetc.com</u> and section 14). Do not exceed 6RPM during the make-up
- Check the graph meets the acceptance criteria (detailed in section 12)
- Finally, clean excess compound from ID and end drift as per API 5CT or customer requirements
- Apply a suitable or specific storage compound before applying the thread protector

8.2 Recommended Checks

Before running JFE connections, the following preliminary checks should be carried out:

• Ensure the rig alignment is correct as per the image below:

Recommended Checks continued on next page

8.2 Recommended Checks (continued)

Before running JFE connections, the following preliminary checks should be carried out:

- Ensure the correct thread dope compound (see section 7 for approved compounds) & sufficient amount exists to complete the entire job. Do not use if expiry date has passed and JFE recommends that a new pail of dope is used for each running job
- If pipe measuring is required on pipe deck, remove protectors and measure from pin face to box face. This is the total length and the effective length can be achieved using the following calculation:
 Effective length = total length – make-up loss (Make-up loss can be found on the connection data sheet)
- Check the equipment and surrounding areas are safe and free from any potential hazards
- Check the correct elevators and stabbing guides are compatible with the coupling and pipe diameters – slip type elevators should be used for special bevel and special clearance couplings
- Check the tong and torque turn equipment are calibrated and hold a valid calibration certificate
- Check the load cell is suitable for the upcoming running job, i.e. a 50kft-lb power tong is unsuitable for a make-up torque of 2,000ft-lb
- Ensure the torque turn equipment is computer controlled. Recommended resolution = 1000 DP/Turn
- Ensure the correct make-up torque values for the JFE connection are applied
- Check the tong dies, slips and slip type elevators are appropriate for the running job i.e. low stress/non-marking for high chrome/CRA/Sour Service material¹. See section 9.4
- If drifting, precautions should be taken to ensure the nose/seal areas are not damaged. A Teflon or Nylon drift is recommended. If possible, install open ended thread protectors when carrying out this operation. Drift sizes are specified in section 8.3.
- If running chromium steel connections, nylon slings and strap wrenches should be available
- Ensure a sufficient quantity of spare thread protectors
 are available in the event the pipe is pulled
- Locate and inspect all required pipe and accessories to be installed and ensure the correct connection and material grade exists
- When cleaning the connections prior to running, remove the storage compound using high pressure hot water, cleaning solvent, i.e. soap, then ensure connections are completely dry. Do not use diesel or kerosene as this may leave a thin film on the threads and affect the friction during make-up
- Re-install clean thread protectors before lifting
 operations up to the vee door begin

The torque figures for all JFE connections can be found at www.jfetc.com.

All the major tong operators' offer dies for use with their tong equipment when running corrosion resistant alloy (CRA) tubulars. It is important when running CRA tubulars to minimise or prevent surface penetration as this can lead to stress raisers and assist with stress corrosion cracking (SCC) and/or sulphide stress cracking (SSC).

8.3 Drifting

- It is recommended to perform the drift operation from box to pin end to avoid dragging dirt and debris from the ID of the pipe into rig prepared box connections
- The drift may also be known as a 'rabbit' where the length is shorter than the required length as per API 5CT. The use of this is at the customers discretion.
- A Teflon or Nylon drift is recommended for all operations, however when drifting chromium or CRA steel grades a Teflon or Nylon drift mandrel must be used
- The drift mandrel should meet the API specifications (5CT E.28) as shown in the following table:

Standard drift sizes:

Size (inch)	Standard Length (inch)	Drift Diameter (inch)
Tubing		
≤2 1⁄8	42	d-(3/32)
> 2 7/8 to 8 5/8	42	d-(1/8)
> 8 5 % to 10 3 4	42	d-(5/32)
Casing		
< 9 5/8	6	d-(1/8)
9 5⁄8 to 13 3⁄8	12	d-(5/32)
> 13 3/8	12	d-(3/16)
9 5% to 13 3% > 13 3%	12 12	d-(³ / ₁₆)

d = nominal pipe internal diameter

Alternative/special drift sizes:

Size (inch)	Weight (lb/ft)	Standard Length (inch)	Drift Diameter (inch)
7	23.00	6	6.250
7	29.00	6	6.125
7	32.00	6	6.000
7 3⁄4	46.10	6	6.500
8 5/8	32.00	6	7.875
8 5/8	40.00	6	7.625
9 5/8	40.00	12	8.750
9 5/8	53.50	12	8.500
9 5/8	58.40	12	8.375
9 7⁄8	66.90	12	8.500
10 3⁄4	45.50	12	9.875
10 3⁄4	55.50	12	9.625
11 3⁄4	42.00	12	11.000
11 3⁄4	60.00	12	10.625
11 3⁄4	65.00	12	10.625
13 3/8	72.00	12	12.250
14	114.00	12	12.250
14	115.00	12	12.250

9 Running Information

9.1 Guidelines

- During the pick-up operation where the pipe will travel up the vee door, the single joint elevator should fit neatly around the pipe behind the coupling
- If drifting from the top of vee door, precautions should be taken to ensure the nose/seal areas are not damaged. A Teflon or Nylon drift is recommended. If possible, install open ended thread protectors when carrying out this operation
- · Inspect the box connection at this stage and ensure no damage exists
- To avoid a potential drop hazard downhole, it is recommended to apply the approved thread compound to the dry, clean box at this stage – excess dope compound should be removed. Application of the thread compound should be performed with a non-metallic soft bristle moustache brush as shown in Fig 9.1 or similar
- Throughout travel up the vee door, the pin protector should remain tightly assembled to prevent damage
- Alternatively, if pick-up and laydown equipment is used, these should be lined with plastic/rubber when handling chromium, CRA & sour service grades. Wood should not be used to line the bucket as wooden splinters can cause problems during make-up and running
- Do not remove the pin thread protector until the joint is hanging vertically in the derrick area – this will help to prevent damage from mishandling. Do not remove directly above the open coupling secured in the rotary table/slips to avoid contamination
- If 'quick type' protectors are utilised, the shipping protector should be removed immediately prior to lifting up the vee door and the quick type protector installed before travel – the 'quick type' protector should fit correctly and cover the entire connection
- Once the pin protector is removed, inspect to ensure no damage exists before applying the approved thread compound over the dry, clean connection – excess dope compound should be removed.
 Application of the thread compound should be performed with a nonmetallic soft bristle moustache brush as shown in Fig 9.1 or similar
- In some cases, the connections may arrive at the rig in a 'ready to run' state, therefore no dope application will be required on the drill floor
- Install a clean, correctly sized stabbing guide
 to the coupling and securely fasten

Fig 9.1 - Moustache Brush - Recommended application brush for thread compound

- Once the pin is directly above the box immediately before the stabbing process, check the alignment once again
- The initial one or two turns during the stabbing process are critical to achieve correct thread engagement. For small diameters, a strap wrench or chain tong can be used to assist with this process, and for large diameters the tong in low speed can be utilised
- For chrome and CRA material, it is recommended to use a strap wrench to walk the connection in. This will reduce the chance of cross-threading and possible galling damage
- If the connection becomes locked during stabbing, rotate the pipe in the reverse direction until the connection drops, also known as 'bumps'
- Once the stabbing operation is completed, the final make-up operation can commence
- Position power tongs around the connection and ensure the tong grips pipe to pipe at the appropriate gripping pressure. See section 9.3 for jaw/die permissible depth mark information
- During the final make-up stage, the maximum rotational speed should not exceed **6 RPM**
- If a tubing connection (≤ 4 ½") has three failed makeup attempts, lay down and select a new pin
- If a casing connection (≥ 5") has two failed makeup attempts, lay down and select a new pin

It is recommended to clean make-up dies, slip dies and elevator dies every 50 joints to avoid slippage and subsequent damage to the pipe/coupling body.

It is recommended to use slip type elevators for special clearance OD and 20° optional bevel couplings.

JFE Clear-Run Running Guide

- JFE Clear Run prepared pipe will likely be delivered to the rig site in a ready to run condition, therefore no cleaning is required. Clear Glide acts as a long-term storage and running compound
- A visual inspection can be performed through the Clear-Glide due the semi-transparent appearance
- Ensure contamination does not occur which may result in running issues, e.g., yielding
- Check www.jfetc.com for the latest torque figures as Clear Run
 make-up torques are different from the standard product

9.2 Running Dual Completions

When running dual completions, it is recommended to use a dual completion tong as shown below:

×

Not Recommended

Using a dual completion tong eliminates the requirement for a spreader bar

A spreader bar will cause side loading on the connection as shown in the image to the right. This is not recommended.

For additional running information, follow the steps as detailed in running guidelines (Section 9.1)

Photos courtesy of Frank's International

9.3 Running Pipe in Stands

- Stands should be racked with pin protectors fitted & seated on a wooden board/non-metallic surface
- Ensure a weight compensator is being used when running stands. It is recommended the compensator be set at 50 to 100lbs more than the total stand weight.
- Once the connection has been stabbed correctly, rotate the pipe anti-clockwise to ensure correct thread engagement has been achieved. The tong can then be used to run in the casing to the hand tight position, not exceeding 6RPM
- For small diameter casing, care should be taken to prevent the stand from bowing during stabbing and make-up operations
- Follow the steps as detailed in the above running guidelines (Section 9.1)
- When racking back stands post break-out, protectors should be assembled tightly on the pin connections. There should also be a sufficiently sized hole within the protector to allow for drainage of rain water and fluids from the ID
- If a box protector is installed, a sufficient hole should exist to prevent pressure build up when lowering the stand
- Stands should be placed on wood or rubber mats during storage
- If stands are to be stored for prolonged periods, the pin and box connection should be cleaned and storage compound applied before assembly of the protector

For additional information, please refer to the relevant running manual (TP-M-001).

9.4 Jaw/Die Depth Mark Information

9.4.1 Low Alloy Criteria

OD Size (inch)	Coupling OD Max Grip Mark (inch) as per API 5CT E.36	Pipe OD Max Grip Mark as per API 5CT SR2 Requirement (JFE-TC Recommendation)
< 3 1/2	0.025	
3 ½ to 6.068	0.030	5% of Nominal Wall Thickness
> 6 5/8	0.040	

9.4.2 High Chrome and CRA Criteria

For material with chrome content from 9%Cr to 17%Cr, JFE recommend the use of low stress or non-marking jaws/dies.

For CRA materials, i.e. API 5CRA groups 2 to 4, non-marking jaws/ dies are recommended however it is up to discretion of the end user.

For high chrome and CRA material, it is recommended that a maximum tong depth of 0.015" or 5% of nominal wall thickness (whichever is less), exists on both the pipe and coupling surface.

Note: To promote good industry practise, it is recommended to treat sour service grade steels in a similar fashion to CRA in order to avoid stress raisers in high concentration hydrogen (H2S) environments.

9.5 Orientating Well Features

JFE Steel offer an option where connections can be manufactured to assist with the alignment of well features to specific orientations, whether onshore or offshore. This feature is typically required for gauge mandrels, dual completions, etc.

It is strongly recommended that a trained JFE representative be present for any orientation process.

For more information, please contact your local JFE-TC office.

10 Hydrostatic Test Fixtures

10.1 JFELION Hydrostatic Test Fixtures

The JFELION hydrostatic test plug and cap design prevents metal to metal seal contact with accessory components due to the inclusion of an O-ring. The test cap and plug are also low torque designs. This section provides details for O-ring dimensions, assembly and inspection of the fixture.

The following points shall be noted when manufacturing JFELION Test Caps and Plugs:

 The following information shall be low stress stamped on all test fixtures. Size, Weight, SD number or special design designation and Maximum Working Pressure, the maximum pressure shall not exceed 10,000psi.

Example: 7" 29# JFELION SD49 P110 MWP: 10,000psi

Note: If the test cap or plug requires increased working pressure above 10,000psi, contact your local JFE-TC office.

- Test caps and plugs shall be manufactured from low alloy steel with a minimum yield strength of 110ksi and maximum yield strength of 140ksi.
- Higher rated Autoclave connections can be used instead of ½" NPT. But the maximum working pressure will remain limited to 10,000psi unless otherwise specified by the controlling center.

10.1.1 O-Ring Details

The following grade and dimensions of O-Ring material shall be used.

Designation	Nominal Actual		0-ring Material
Tubing	0.0625"	0.070" +/-0.003" (1.78mm)	NBR or Viton
Casing	0.125"	0.139" +/-0.004" (3.53mm)	(90 Durometer)

Note:

- Reference Parker O-Ring handbook guide for design, table 4-2.
- It is recommended that the O-Rings are moulded or spliced and vulcanized.
- It is recommended to discard the O-ring after single use.

10.1.2 O-ring Groove Diameters

Figure 10.1.1 – Test plug groove detail

Table 10.1.1 Tubing test plug groove diameter

		Weight (lb/ft)		
Size	Classification	Min	Max	Groove Diameter
0.7/ #	SD26	6.4#	6.4#	2.6087
2 1/8	SD30	7.8#	9.35#	2.5796
0.1/#	SD29	9.2#	10.2#	3.2111
3 1/2	SD35	12.7#	14.8#	3.1766
4"	SD35	11.6#	16.1#	3.6736
	SD29	11.6#	12.6#	4.2071
4 1/2"	SD32	13.5#	15.2#	4.1896
	SD35	17.0#	18.9#	4.1671
	SD30	15.0#	15.0#	4.6980
5"	SD36	18.0#	21.4#	4.6621
	SD38	23.2#	24.1#	4.6466

Table 10.1.2 Casing test plug groove diameter

		Weigh	t (lb/ft)	
Size	Classification	Min	Max	Groove Diameter
4 1⁄2"	SD51	21.5	23.7	3.9795
	SD41	15.5#	17.0#	5.0327
E 1/II	SD46	20.0#	23.0#	5.0037
5 1/2"	SD49	26.0#	26.8#	4.9839
	SD51	28.4#	29.7#	4.9711
c"	SD45	22.8#	22.8#	5.5109
0	SD50	32.0#	32.0#	5.4808
6.068"	SD61	32.6#	32.6#	5.4793
	SD41	20.0#	20.0#	6.1625
6 5⁄8"	SD49	24.0#	32.0#	6.1049
	SD54	40.2#	40.2#	6.0807
	SD49	23.0#	29.0#	6.4859
7"	SD52	32.0#	35.0#	6.4627
	SD54	38.0#	42.7#	6.4474
	SD47	26.4#	29.7#	7.1155
7 5⁄8"	SD52	33.7#	39.0#	7.0832
	SD57	42.8#	42.8#	7.0510
	SD50	36.0#	44.0#	8.0971
8 5⁄8"	SD57	49.0#	52.0#	8.0546
	SD62	54.0#	57.4#	8.0255
9 5⁄8"	SD51	40.0#	43.5#	9.0862
	SD57	47.0#	59.4#	9.0505
9 1⁄8"	SD68	62.8#	68.9#	9.2362
10.3//	SD56	51.0#	51.0#	10.1849
10 %4	SD65	55.5#	73.2#	10.1308
10 1/8"	SD65	72.0#	72.0#	10.2558

Figure 10.1.2 – Test cap groove detail

Table 10.1.3 Tubing test cap groove diameter

		Weight (lb/ft)		
Size	Classification	Min	Max	Groove Diameter
2 7⁄8"	SD26	6.4#	6.4#	2.8346
	SD30	7.8#	9.35#	2.8056
0.1/#	SD29	9.2#	10.2#	3.4371
3 1/2	SD35	12.7#	14.8#	3.4016
4"	SD35	11.6#	16.1#	3.9016
4 1⁄2"	SD29	11.6#	12.6#	4.4371
	SD32	13.5#	15.2#	4.4196
	SD35	17.0#	18.9#	4.3971
5"	SD30	15.0#	15.0#	4.9300
	SD36	18.0#	21.4#	4.8941
	SD38	23.2#	24.1#	4.8786

Table 10.1.4 Casing test cap groove diameter

		Weight (lb/ft)		
Size	Classification	Min	Max	Groove Diameter
4 1/2"	SD51	21.5	23.7	4.4409
5 ½"	SD41	15.5#	17.0#	5.5021
	SD46	20.0#	23.0#	5.4731
	SD49	26.0#	26.8#	5.4538
	SD51	28.4#	29.7#	5.4376
<u>c"</u>	SD45	22.8#	22.8#	5.9783
0	SD50	32.0#	32.0#	5.9467
6.068"	SD61	32.6#	32.6#	5.9467
	SD41	20.0#	20.0#	6.6329
6 5⁄8"	SD49	24.0#	32.0#	6.5813
	SD54	40.2#	40.2#	6.5491
7"	SD49	23.0#	29.0#	6.9583
	SD52	32.0#	35.0#	6.9351
	SD54	38.0#	42.7#	6.9198
7 5⁄8"	SD47	26.4#	29.7#	7.5904
	SD52	33.7#	39.0#	7.5581
	SD57	42.8#	42.8#	7.5259
	SD50	36.0#	44.0#	8.5710
8 5⁄8"	SD57	49.0#	52.0#	8.5285
	SD62	54.0#	57.4#	8.4994
9 5⁄8"	SD51	40.0#	43.5#	9.5646
	SD57	47.0#	59.4#	9.5259
9 7⁄8"	SD68	62.8#	68.9#	9.7136
10 3⁄4"	SD56	51.0#	51.0#	10.6638
	SD65	55.5#	73.2#	10.6057
10 7⁄8"	SD65	72.0#	72.0#	10.7307

10.1.3 Installation of O-ring

Prior to installation of the O-ring, use a non-metallic brush with a liquid solvent to remove any storage compound. The connection and body of the fixtures should be visually inspected for signs of any impact damage, corrosion etc.

 Place the respective O-rings into the cap and plug grooves using suitable O-ring grease such as Parker O-Lube, see Fig's 3 and 4.

Figure 10.1.3 – O-ring fitted (Plug)

Figure 10.1.4 – O-ring fitted (Cap)

2 API Modified or suitable thread compound shall be applied to all other areas except for the 0-ring area, however it should be applied to the corresponding surface where the 0-ring will contact once assembled, see figures 5 and 6.

Figure 10.1.5 – Thread Compound (Plug) Figure 10.1.6 – O-ring fitted (Cap)

10.1.4 Make-up of JFELION Hydrostatic Cap or Plug

Only low torque is required to energise the O-Ring for testing. A power tong should not be used for assembly of the test cap or plug. For caps and plugs that do not have handles installed, a strap/chain wrench can be used after hand tightening to ensure sufficient torque has been applied to energise the O-ring. For caps or plugs that have handles installed, hand tightening with the handles should be sufficient but it is recommended to apply final torque with a strap/chain wrench.

Post pressure testing and break-out, use a non-metallic brush with a liquid solvent to remove any thread compound and O-ring grease. The connection should be visually inspected for signs of any galling, handling damage etc.

10.1.5 Storage and Maintenance

After use, the fixtures should be thoroughly cleaned, dried and a suitable storage compound such as Kendex applied prior to installation of thread protectors. It is recommended that the fixtures be stored indoors and are not subjected to outdoor weather conditions.

It is recommended to perform NDE on the entire body of the fixture annually to check for any surface breaking and or sub-surface defects such as cracks.

10.1.6 Disclaimer

The users of these test caps and plugs are liable for the maintenance, use and safe operation. In no event shall JFE be liable for any damages, costs and expenses incurred in connection with the use of these test fixtures.

10.2 JFEBEAR Hydrostatic Test Fixtures

JFEBEAR Hydrostatic test fixtures are low torque, however require metal to metal seal contact to achieve a pressure test. Soft seal options are currently not available.

The following points shall be noted when manufacturing JFEBEAR Test Caps and Plugs:

 The following information shall be low stress stamped on all test fixtures. Size, Weight, and Maximum Working Pressure, the maximum pressure shall not exceed 10,000psi.

Example: 3.5" All weights JFEBEAR P110 MWP = 10,000psi

- Test caps and plugs shall be manufactured from low alloy steel with a minimum yield strength of 110ksi and maximum yield strength of 140ksi.
- Higher rated Autoclave connections can be used instead of ½" NPT. But the maximum working pressure will remain limited to 10,000psi unless otherwise specified by the controlling center.

10.2.1 Make-up of JFEBEAR Hydrostatic Cap or Plug

Only low torque is required to engage the seal for testing, therefore the test cap or plug should not be made up with a power unit.

For caps or plugs that do not have handles installed a strap/chain wrench should be used after hand tightening to assure seal engagement.

For cap or plugs that have handles installed, hand tightening with the handles should be sufficient. If not a cheater bar positioned over the handle can be used to further engage the seals.

JFE do not advise the use of any type of seal rings during pressure testing.

10.2.2 Storage and Maintenance

After use, the fixtures should be thoroughly cleaned and inspected for any damage that may have occurred during assembly. The connection should be dried and a suitable storage compound such as Kendex applied prior to installation of thread protectors. It is recommended that the fixtures be stored indoors and are not subjected to outdoor weather conditions.

It is recommended to perform NDE on the entire body of the fixture annually to check for any surface breaking and or sub-surface defects such as cracks.

10.2.3 Disclaimer

The users of these test caps and plugs are liable for the maintenance, use and safe operation. In no event shall JFE be liable for any damages, costs and expenses incurred in connection with the use of these test fixtures.

11 Lifting Plugs

11.1 FOX, JFEBEAR, JFETIGER, JFELION Lift Plugs

Figure 11.1.1 – Example of main body for lift plug (seal removed)

The following points shall be adhered to for FOX, JFEBEAR, JFETIGER and JFELION lift plugs:

- The lift plug shall be manufactured from low alloy steel with a specified minimum yield stress (SMYS) of 110ksi, and a maximum yield stress of 140ksi.
- The lift plug shall be bead peened, phosphated or copper-plated as per the relevant procedures. Once machining has been completed, weld on handles can be installed to assist with handling and assembling operations. If handles are installed, they shall be of appropriate size and orientated 0° and 180°.
- The lift plug is low torque and therefore a power tong is not required. Final positioning before lifting operation can be achieved using the handles or strap wrench/chain tong
- The following information shall be low stress stamped on the lift plug where drifting operations are not required:

Size, All weights, grade and either FOX, JFEBEAR, JFETIGER or JFELION SDXX Lift Plug Licensee code plus manufacturing date For lifting a maximum of three joints only

JFELION Example

9 5/s" 58.4# AISI 4145 110ksi JFELION SD57 Lift Plug SI-081; 22nd April 2021 For lifting a maximum of three joints only Note: 58.4# is stamped as this is the heaviest weight within the SD

JFEBEAR Example

9 5%" All weights AISI 4145 110ksi JFEBEAR Lift Plug SI-081; 22nd April 2021 For lifting a maximum of three joints only

 The following information shall be low stress stamped on the lift plug where drifting through the plug is required:

Size, weight, grade and either FOX, JFEBEAR, JFETIGER or JFELION SDXX Lift Plug Bore ID = XXXX Licensee code plus manufacturing date For lifting a maximum of three joints only

Example

7" 29# AISI 110ksi JFEBEAR Lift Plug Bore ID = 6.184" SI-081; 22nd April 2021 For lifting a maximum of three joints only

11.2 JFECOBRA Lift Plugs

11.2.1 Single Step JFECOBRA Lift Plugs

Figure 11.2.1 – Example of JFECOBRA Lifting Sub

The following points shall be noted when manufacturing the single step JFECOBRA lifting plug:

- The lift plug shall be manufactured from low alloy steel with a specified minimum yield stress (SMYS) of 110ksi, and a maximum yield stress of 140ksi.
- The lift plug shall be bead peened, phosphated or copper-plated as per the relevant procedures. Once machining has been completed, weld on handles can be installed to assist with handling and assembling operations. If handles are installed, they shall be of appropriate size and orientated 0° and 180°.
- The lift plug is low torque and therefore a power tong is not required. Final positioning before lifting operation can be achieved using the handles or strap wrench/chain tong
- The following information shall be low stress stamped on the single step lift plug:

Size, weight, grade, JFECOBRA Lift Plug Licensee code plus manufacturing date For single joint lifting purposes only

Example

9 5%" 53.5# 4140 110ksi JFECOBRA Lift Plug SI-081; 22nd April 2021 For single joint lifting purposes only

11.2.2 JFECOBRA Lifting Sub (Full String)

Figure 11.2.2 – Example of JFECOBRA Lifting Sub (Full String)

The following points shall be noted when manufacturing the JFECOBRA lifting sub (full string):

- Lifting sub shall be manufactured from a low alloy steel with specified minimum yield stress (SMYS) of 110ksi, and a maximum yield stress of 140ksi
- The lift plug shall be bead peened, phosphated or copper-plated as per the relevant procedures. Once machining has been completed, weld on handles can be installed to assist with handling and assembling operations. If handles are installed, they shall be of appropriate size and orientated 0° and 180°.
- The lift sub is low torque and therefore a power tong is not required. Final positioning before lifting operation can be achieved using the handles or strap wrench/chain tong
- The following information shall be low stress stamped on the lifting sub:

Size, weight, grade, JFECOBRA Lift Sub Licensee code plus manufacturing date Maximum load rating = See table 11.2.1 for maximum load rating per size

Example

9 5%" 53.5# 4140 110ksi JFECOBRA Lift Sub SI-081; 22nd April 2021 Maximum load rating = 600kip

Table 11.2.1 Maximum load rating for JFECOBRA Lift Sub

Size (inch)	Weight (lb/ft)	Maximum Load Rating (kip)
5	24.1	270
5 1/2	26.0	291
7 5⁄8	39.0	437
9 5⁄8	53.5	600
9 5⁄8	80.8	904
10	68.7	770
10 3⁄4	73.2	820
11 3⁄4	80.5	902
13 5⁄8	88.2	988
14	115.0	1288
16	109	1221

12 Make-up Graph Acceptance Criteria

12.1 JFELION, JFETIGER & JFECOBRA

Figure 12.1.1 – Example of an acceptable, typical JFELION/JFETIGER make up graph

If a case exists where premature dump torque occurs or a high shoulder is observed, if:

Achieved delta torque = minimum torque - maximum shoulder

the graph may be accepted. This rule can be applied for standalone cases, however if high shoulders continue to occur/premature dump occurs, contact your local JFE-TC office for further advice.

Figure 12.1.2 – Example of an acceptable JFELION/JFETIGER make-up graph (shoulder torque and maximum torque value of the dope hump are below maximum shoulder torque and linearity has since been reestablished prior to shouldering)

Figure 12.1.3 – Example of an acceptable JFELION/JFETIGER makeup graph (the maximum torque value of the dope hump exceeds the maximum shoulder torque, however linearity is re-established prior to shouldering at a value below maximum shoulder torque)

Figure 12.1.4 – Example of an acceptable JFELION/JFETIGER makeup graph (minor loss of linearity within 0.1 delta turns). If delta turns are higher than 0.1, however the graph remains linear, the graph is acceptable.

Figure 12.1.5 – Example of an acceptable JFELION/JFETIGER makeup graph. Minor slippage during thread engagement and slope returns to similar gradient once slipping occurs. Rectify for next make-up

Possible causes of graph profile but not limited to, are as follows:

- Pipe may not be straight
- Jaw of power tong is worn out or dirty

Figure 12.1.6 – Example of an unacceptable JFELION/JFETIGER make-up graph (the maximum torque value of the dope hump exceeds the maximum shoulder torque, however linearity is re-established prior to shouldering at a value below maximum shoulder torque)

Figure 12.1.7 – Example of an unacceptable JFELION/JFETIGER make-up graph (the peak torque value of the dope hump is above the maximum shoulder torque value and the selected position is within the dope hump area)

Possible causes of unacceptable graph profile but not limited to, are as follows:

- Dope is contaminated
- Excessive dope application

Procedure if the above graph profile is encountered:

- · Break-out, clean and inspect the connection
- Investigate the other components if connection looks OK
- · Re-make up if no galling exists

Figure 12.1.8 – Example of an unacceptable JFELION/JFETIGER make-up graph (loss of linearity falls out of the 0.1 delta turns criteria). If in doubt, please contact your local JFE Technical Center

Possible causes of unacceptable graph profile but not limited to, are as follows:

- Dope is contaminated
- · Pin or box dimensions are out with the tolerance range
- The surface treatment for the pin or box is out with the tolerance range
- · Friction factor of dope is too low
- Load cell error

Procedure if the above graph profile is encountered:

- · Break-out, clean and inspect the connection
- Check for deformed torque shoulder and if deformation is evident, lay down both pin and box
- Re-make up if no galling exists

It should be noted that if the delta turns are greater than 0.1, however no loss of linearity exists, the graph can be accepted

Figure 12.1.9 – Example of an unacceptable JFELION/JFETIGER make up graph (Exceeds Max Shoulder Torque)

Possible causes of unacceptable graph profile but not limited to, are as follows:

- Friction factor of dope is too high
- Pipe may not be straight
- Pin or box dimensions are out with the tolerance range
- The surface treatment for the pin or box is out with the tolerance range

Procedure if the above graph profile is encountered:

- Break-out, clean and inspect the connection
- Investigate the other components if connection looks OK
- Re-make up if no galling exists

Figure 12.1.10 – Example of an unacceptable JFELION/JFETIGER make up graph (Exceeds Max Shoulder Torque)

Possible causes of unacceptable graph profile but not limited to, are as follows:

- Friction factor of dope is too high
- Dope is contaminated
- Pipe may not be straight
- Pin or box dimensions are out with the tolerance range
- The surface treatment for the pin or box is out with the tolerance range

Procedure if the above graph profile is encountered:

- Break-out, clean and inspect the connection
- Investigate the other components if connection looks OK
- Re-make up if no galling exists

Figure 12.1.11 – Example of graph where unacceptable slippage has occurred after shouldering

Possible causes of unacceptable graph profile but not limited to, are as follows:

- Jaw of power tong is worn
- Contamination on pipe/coupling or dies/jaw
- Gripping pressure too low

Procedure if the above graph profile is encountered:

- Break-out, clean and inspect the connection
- Determine the root cause of slippage
- Re-make up if no galling exists

12.2 JFEBEAR

Figure 12.2.1 – Example of an acceptable, typical JFEBEAR make up graph

Figure 12.2.2 – Example of an acceptable JFEBEAR make-up graph (minor loss of linearity within 0.1 delta turns). If delta turns are higher than 0.1, however the graph remains linear, the graph is acceptable.

Figure 12.2.3 – Example of an acceptable JFEBEAR make up graph (Minor slippage during thread engagement)

Figure 12.2.4 – Example of an unacceptable JFEBEAR make-up graph (loss of linearity falls out of the 0.1 delta turns criteria). If in doubt, please contact your local JFE Technical Center

Possible causes of the unacceptable graph profile but not limited to, are as follows:

- Shoulder torque has not been selected correctly
- Dope is contaminated
- Pin or box dimensions are out with the tolerance range
- The surface treatment for the pin or box is out with the tolerance range
- · Friction factor of dope is too low
- Load cell error

Procedure if the above graph profile is encountered:

- · Break-out, clean and inspect the connection
- Investigate the other components if connection looks OK
- Re-make up if no galling exists

It should be noted that if the delta turns are greater than 0.1, however no loss of linearity exists, the graph can be accepted.

Figure 12.2.5 – Example of an unacceptable JFEBEAR make up graph (Exceeds Max Shoulder Torque)

Possible causes of the unacceptable graph profile but not limited to, are as follows:

- Friction factor of dope is too high
- Dope is contaminated
- · Pipe may not be straight
- Pin or box dimensions are out with the tolerance range
- The surface treatment for the pin or box is out with the tolerance range

Procedure if the above graph profile is encountered:

- · Break-out, clean and inspect the connection
- · Investigate the other components if connection looks OK
- · Re-make up if no galling exists

Figure 12.2.6 – Example of an unacceptable JFEBEAR make up graph (Slipping during seal engagement portion)

Possible causes of the unacceptable graph profile but not limited to, are as follows:

- Pipe may not be straight
- Jaw of power tong is worn out or dirty

Procedure if the above graph profile is encountered:

- Break-out, clean and inspect the connection
- Investigate the other components if connection looks OK
- Re-make up if no galling exists

Figure 12.2.7 – Example of an unacceptable JFEBEAR make up graph (No clear shoulder torque)

Possible causes of the unacceptable graph profile but not limited to, are as follows:

- Friction factor of dope is too high
- Dope is contaminated
- · Pipe may not be straight
- Pin or box dimensions are out with the tolerance range

Procedure if the above graph profile is encountered:

- Break-out, clean and inspect the connection
- Investigate the other components if connection looks OK
- Re-make up if no galling exists

Figure 12.2.8 – Example of an unacceptable make up graph (Slipping after shouldering)

Possible causes of the unacceptable graph profile but not limited to, are as follows:

- Jaw of power tong is worn
- Contamination on pipe/coupling or dies/jaw
- Gripping pressure too low

Procedure if the above graph profile is encountered:

- Break-out, clean and inspect the connection
- Determine the root cause of slippage
- Re-make up if no galling exists

Figure 12.2.9 – Example of an acceptable JFEBEAR make-up graph (the maximum torque value of the dope hump exceeds the maximum shoulder torque, however linearity is re-established prior to shouldering at a value below maximum shoulder torque)

Figure 12.2.10 – Example of an acceptable JFEBEAR make-up graph (shoulder torque and maximum torque value of the dope hump are below maximum shoulder torque where dope hump extends into shoulder torque gradient)

Figure 12.2.11 – Example of an unacceptable JFEBEAR make-up graph (the maximum torque value of the dope hump exceeds the maximum shoulder torque, however linearity is re-established prior to shouldering at a value below maximum shoulder torque)

Figure 12.2.12 – Example of an unacceptable JFEBEAR make-up graph (the peak torque value of the dope hump is above the maximum shoulder torque value and the selected position is within the dope hump area)

Possible causes of the unacceptable graph profile but not limited to, are as follows:

- Dope is contaminated
- Excessive dope application

Procedure if the above graph profile is encountered:

- · Break-out, clean and inspect the connection
- Investigate the other components if connection looks OK
- Re-make up if no galling exists

12.3 FOX

Figure 12.3.1 - Example of an acceptable, typical FOX make up graph

Figure 12.3.2 – Example of an acceptable FOX make-up graph (Shoulder point is below maximum shoulder)

Figure 12.3.3 – Example of an acceptable FOX make up graph (Minor slippage during thread engagement)

Figure 12.3.4 – Example of an unacceptable FOX make-up graph (loss of linearity is not acceptable). If in doubt, please contact your local JFE Technical Center

Possible causes of the unacceptable graph profile but not limited to, are as follows:

- · Shoulder torque has not been selected correctly
- Dope is contaminated
- · Pin or box dimensions are out with the tolerance range
- The surface treatment for the pin or box is out with the tolerance range
- · Friction factor of dope is too low
- Load cell error

Procedure if the above graph profile is encountered:

- · Break-out, clean and inspect the connection
- Investigate the other components if connection looks OK
- Re-make up if no galling exists

It should be noted that if the delta turns are greater than 0.1, however no loss of linearity exists, the graph can be accepted.
Figure 12.3.5 – Example of an unacceptable FOX make up graph (Exceeds Max Shoulder Torque)

Possible causes of the unacceptable graph profile but not limited to, are as follows:

- Friction factor of dope is too high
- Dope is contaminated
- · Pipe may not be straight
- Pin or box dimensions are out with the tolerance range
- The surface treatment for the pin or box is out with the tolerance range

Procedure if the above graph profile is encountered:

- Break-out, clean and inspect the connection
- Investigate the other components if connection looks OK
- · Re-make up if no galling exists

Figure 12.3.6 – Example of an unacceptable FOX make up graph (Slipping during seal engagement)

Possible causes of the unacceptable graph profile but not limited to, are as follows:

- · Pipe may not be straight
- Jaw of power tong is worn out or dirty

Procedure if the above graph profile is encountered:

- · Break-out, clean and inspect the connection
- Investigate the other components if connection looks OK
- · Re-make up if no galling exists

Figure 12.3.7 – Example of an unacceptable FOX make up graph (No clear shoulder torque)

Possible causes of the unacceptable graph profile but not limited to, are as follows:

- Friction factor of dope is too high
- Dope is contaminated
- Pipe may not be straight
- · Pin or box dimensions are out with the tolerance range
- The surface treatment for the pin or box is out with the tolerance range

Procedure if the above graph profile is encountered:

- · Break-out, clean and inspect the connection
- Investigate the other components if connection looks OK
- Re-make up if no galling exists

13 Break-out & Re-running Information

13.1 Break-out

In order to break-out the connection, the tong should be positioned so that the back-up jaws grip over the mill end coupling OD. Do not apply excessive jaw gripping pressure.

Photo courtesy of Weatherford International

- Ensure the back-up grips on the tong are the correct size for the coupling OD
- Apply tension to the joint or stand; the applied load should equal approx. the weight of the joint or stand. It is recommended to utilise a weight compensator
- Apply the break-out torque slowly and maintain a steady speed to avoid damage
- Never use a hammer or other hard object to assist with the break-out as this may cause damage
- The torque required to break-out the connection may be considerably more compared to make-up
- For chrome connections, once the torque is low enough, it is recommended to use a strap wrench to walk the connection out
- To avoid damage, ensure a stabbing guide of the correct size is assembled over the coupling before lifting the joint out of the corresponding box
- For whatever reason the connection is being broken out for, if not being immediately re-run, clean the connection before applying storage compound or Clear Glide and fitting the appropriate thread protector. Clear Glide in an approved storage compound for JFE connections.

13.2 Re-running

Prior to re-running, it is recommended that the connections are inspected by a qualified JFE field service representative to ensure they are acceptable to run in hole again.

- If a tubing connection (≤ 4 ½") has three failed makeup attempts, lay down and select a new pin
- If a casing connection (≥ 5") has two failed makeup attempts, lay down and select a new pin

14 Thread Locking Compound

This guideline outlines the method for applying thread locking compound and the make-up acceptance criteria.

14.1 Locking Compound Information

The locking compound manufacturer's instructions should be followed to ensure the compound is used correctly. The locking compound should be mixed and applied at the last moment prior to make-up to prevent make-up issues, e.g., high shoulder torque. The compound begins to cure immediately once the catalyst is introduced causing the friction factor to increase over time.

14.2 Application Procedure

1 The thread locking compound should be applied to the pin thread run-out area as shown below in figure 14.2.1. Under no circumstances should the locking compound be applied to the seal and torque shoulder areas. Thread compound can be applied to the pin nose and torque shoulder areas.

Figure 14.2.1 – Thread Lock Application (Pin Only)

2 Apply a thin, even coat of the approved thread compound to cover the thread, seal and torque shoulder area shown in figure 14.2.2 below. The compound should cover approximately 50% of the box connection where seal and thread forms should be discernible after application.

3 When making up the connection, standard torque values with a friction factor of 1.0 shall be used.

14.3 Torque Values

Depending on the type of locking compound and connection size, increasing the torque range may be required. The maximum torque with sealability (MTS) value can be used as a maximum torque value. When using the MTS, adjust the optimum torque to 95% of the MTS while maintaining the original minimum torque value. If an MTS value is not shown on the connection data sheet, please contact your local JFETC office for further assistance.

Torque setting example:

	MTS	MTS value on CDS		
Torque	Optimum (Dump)	95% of MTS value		
	Minimum	Minimum		

Thread lock make-up graph examples are shown in figures 14.3.1 and 14.3.2.

Figure 14.3.1 – Example where optimum torque has been set at 95% of the MTS value

Figure 14.3.2 – The minimum delta torque is achieved after shouldering during make-up, the make-up is acceptable

15 Pipe and Coupling Colour Code Information

15.1 API 5CT

P110			
P110-1Cr			-
P110-RY			
P110-CY			
Р110-Е			
P110-HC			
Р110-НСХ			
P110-MS			
C110			
С110-НС			•••
Pipe Grade	Coupli	ing	Pipe Body
Pipe Grade C110-HCX	Coupli	ing	Pipe Body
Pipe Grade C110-HCX C110-XS	Coupli		Pipe Body
Pipe Grade C110-HCX C110-XS C110-XSHC	Coupli		Pipe Body
Pipe Grade C110-HCX C110-XS C110-XSHC C110-XSXHC			Pipe Body
Pipe Grade C110-HCX C110-XS C110-XSHC C110-XSXHC Q125	Coupli		Pipe Body
Pipe Grade C110-HCX C110-XSHC C110-XSHC Q125 Q125-RY			Pipe Body
Pipe Grade C110-HCX C110-XS C110-XSHC C110-XSHC Q125 Q125-RY Q125-CY			Pipe Body
Pipe Grade c110-HCX c110-XS c110-XSHC c110-XSHC q125-RY q125-RY q125-CY q125-HC			Pipe Body

Pipe Body

15.2 JFE Chrome

Pipe Grade	Coupling	Pipe Body
JFE-HP2-13Cr-110		
JFE-HP2-13Cr-95M		
JFE-UHP-15Cr-125		
JFE-UHP-15Cr-135		
JFE-UHP-17Cr-110		
JFE-UHP-17Cr-125		

15.3 JFE Carbon

15.4 API 5CRA

16 JFEBEAR Make-up Torques

			55 ksi Grade Torque (ft-lb)					
Size	Weight	Pipe Body		Final Torque	1	Shoulde	r Torque	
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum	
	4.60	0.190	990	1,100	1,210	165	880	
0.34	5.80	0.254	1,350	1,500	1,650	225	1,200	
2 %8	6.60	0.295	1,620	1,800	1,980	270	1,440	
	7.35	0.336	1,890	2,100	2,310	315	1,680	
	6.40	0.217	1,620	1,800	1,980	270	1,440	
	7.80	0.276	1,980	2,200	2,420	330	1,760	
0.7/	8.60	0.308	2,520	2,800	3,080	420	2,240	
2 1/8	9.35	0.340	2,790	3,100	3,410	465	2,480	
	10.50	0.392	3,240	3,600	3,960	540	2,880	
	11.50	0.440	3,420	3,800	4,180	570	3,040	
	7.70	0.216	2,250	2,500	2,750	375	2,000	
	9.20	0.254	2,610	2,900	3,190	435	2,320	
	10.20	0.289	3,060	3,400	3,740	510	2,720	
3 1⁄2	12.70	0.375	4,230	4,700	5,170	705	3,760	
	14.30	0.430	4,770	5,300	5,830	795	4,240	
	15.50	0.476	5,310	5,900	6,490	885	4,720	
	17.00	0.530	5,670	6,300	6,930	945	5,040	
	9.50	0.226	2,700	3,000	3,300	450	2,400	
	10.70	0.262	3,240	3,600	3,960	540	2,880	
4	11.60	0.286	-	-	-	-	-	
4	13.20	0.330	4,230	4,700	5,170	705	3,760	
	14.80	0.380	-	-	-	-		
	16.10	0.415	5,400	6,000	6,600	900	4,800	
	11.60	0.250	3,600	4,000	4,400	400	3,200	
	12.60	0.271	3,960	4,400	4,840	440	3,520	
	13.50	0.290	4,320	4,800	5,280	480	3,840	
1 16	15.20	0.337	5,220	5,800	6,380	580	4,640	
7/2	17.00	0.380	5,940	6,600	7,260	660	5,280	
	18.90	0.430	6,660	7,400	8,140	740	5,920	
	21.50	0.500	7,740	8,600	9,460	860	6,880	
	23.70	0.560	8,640	9,600	10,560	960	7,680	
	13.00	0.253	3,690	4,100	4,510	410	3,075	
	15.00	0.296	4,950	5,500	6,050	550	4,125	
5	18.00	0.362	6,480	7,200	7,920	720	5,400	
	21.40	0.437	8,100	9,000	9,900	900	6,750	
	23.20	0.478	8,730	9,700	10,670	970	7,275	
	24.10	0.500	9,180	10,200	11,220	1,020	7,650	

			80, 85 ksi Grade Torque (ft-lb)				
Size	Weinht	Pine Rody		Final Torque	Shoulde	r Torque	
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum
	4.60	0.190	1,200	1,300	1,400	195	1,040
0.37	5.80	0.254	1,620	1,750	1,880	263	1,400
2 %	6.60	0.295	1,810	1,960	2,110	294	1,568
ĺ	7.35	0.336	2,120	2,295	2,470	344	1,836
	6.40	0.217	1,890	2,040	2,190	306	1,632
Í	7.80	0.276	2,350	2,540	2,730	381	2,032
0.7/	8.60	0.308	2,630	2,840	3,050	426	2,272
2 1/8	9.35	0.340	3,000	3,245	3,490	487	2,596
ĺ	10.50	0.392	3,400	3,675	3,950	551	2,940
	11.50	0.440	3,700	4,000	4,300	600	3,200
	7.70	0.216	2,570	2,850	3,140	428	2,280
ĺ	9.20	0.254	3,500	3,870	4,240	581	3,096
ĺ	10.20	0.289	4,040	4,490	4,940	674	3,592
3 1/2	12.70	0.375	4,710	5,230	5,760	785	4,184
ĺ	14.30	0.430	5,470	6,080	6,690	912	4,864
ĺ	15.50	0.476	6,390	7,100	7,810	1,065	5,680
ĺ	17.00	0.530	6,840	7,600	8,360	1,140	6,080
	9.50	0.226	3,465	3,745	4,025	562	2,996
ĺ	10.70	0.262	3,960	4,400	4,850	660	3,520
. [11.60	0.286	4,390	4,880	5,370	732	3,904
4	13.20	0.330	5,000	5,550	6,110	833	4,440
[14.80	0.380	5,850	6,500	7,150	975	5,200
ĺ	16.10	0.415	6,550	7,270	8,000	1,091	5,816
	11.60	0.250	4,410	4,900	5,390	490	3,920
ĺ	12.60	0.271	4,860	5,400	5,940	540	4,320
ĺ	13.50	0.290	5,400	6,000	6,600	600	4,800
	15.20	0.337	6,570	7,300	8,030	730	5,840
4 1/2	17.00	0.380	7,470	8,300	9,130	830	6,640
ĺ	18.90	0.430	8,640	9,600	10,560	960	7,680
ĺ	21.50	0.500	10,080	11,200	12,320	1,120	8,960
	23.70	0.560	11,250	12,500	13,750	1,250	10,000
	13.00	0.253	4,950	5,500	6,050	550	4,125
ĺ	15.00	0.296	6,120	6,800	7,480	680	5,100
Ē	18.00	0.362	7,840	8,710	9,580	871	6,533
5	21.40	0.437	9,800	10,900	12,000	1,090	8,175
İ	23.20	0.478	11,430	12,700	13,970	1,270	9,525
ĺ	24.10	0.500	11,970	13,300	14,630	1,330	9,975

			90, 95 ksi Grade Torque (ft-lb)					
Size	Weight	Pipe Body		Final Torque	Shoulde	Shoulder Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum	
	4.60	0.190	1,380	1,490	1,600	224	1,192	
234	5.80	0.254	1,800	1,945	2,090	292	1,556	
2 78	6.60	0.295	1,980	2,130	2,280	320	1,704	
	7.35	0.336	2,340	2,530	2,720	380	2,024	
	6.40	0.217	1,980	2,140	2,300	321	1,712	
	7.80	0.276	2,490	2,690	2,890	404	2,152	
0.74	8.60	0.308	2,940	3,170	3,400	476	2,536	
2 1/8	9.35	0.340	3,400	3,675	3,950	551	2,940	
	10.50	0.392	3,960	4,280	4,600	642	3,424	
	11.50	0.440	4,200	4,540	4,880	681	3,632	
	7.70	0.216	3,150	3,500	3,850	525	2,800	
	9.20	0.254	3,640	4,040	4,450	606	3,232	
	10.20	0.289	4,690	5,210	5,730	782	4,168	
3 1/2	12.70	0.375	5,720	6,360	7,000	954	5,088	
	14.30	0.430	6,840	7,600	8,360	1,140	6,080	
	15.50	0.476	6,930	7,700	8,470	1,155	6,160	
	17.00	0.530	7,290	8,100	8,910	1,215	6,480	
	9.50	0.226	3,990	4,430	4,870	665	3,544	
	10.70	0.262	4,920	5,470	6,020	821	4,376	
	11.60	0.286	5,370	5,970	6,570	896	4,776	
1	13.20	0.330	6,080	6,760	7,430	1,014	5,408	
	14.80	0.380	6,750	7,500	8,250	1,125	6,000	
	16.10	0.415	7,810	8,440	9,080	1,266	6,752	
	11.60	0.250	4,770	5,300	5,830	530	4,240	
	12.60	0.271	5,310	5,900	6,490	590	4,720	
	13.50	0.290	5,920	6,580	7,240	658	5,264	
1 1/2	15.20	0.337	7,110	7,900	8,690	790	6,320	
4 72	17.00	0.380	8,140	9,050	9,990	905	7,240	
	18.90	0.430	9,180	10,200	11,220	1,020	8,160	
	21.50	0.500	10,800	12,000	13,200	1,200	9,600	
	23.70	0.560	11,790	13,100	14,410	1,310	10,480	
	13.00	0.253	5,310	5,900	6,490	590	4,425	
	15.00	0.296	6,390	7,100	7,810	710	5,325	
5	18.00	0.362	8,170	9,080	9,990	908	6,810	
5	21.40	0.437	10,400	11,560	12,720	1,156	8,670	
	23.20	0.478	11,970	13,300	14,630	1,330	9,975	
	24.10	0.500	12,510	13,900	15,290	1,390	10,425	

			105, 110 ksi Grade Torque (ft-lb)						
Size	Weiaht	Pipe Body		Final Torque			Shoulder Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	4.60	0.190	1,400	1,510	1,620	227	1,208		
0.34	5.80	0.254	1,810	1,960	2,110	294	1,568		
2 %8	6.60	0.295	2,150	2,325	2,500	349	1,860		
	7.35	0.336	2,450	2,650	2,850	398	2,120		
	6.40	0.217	2,090	2,320	2,550	348	1,856		
	7.80	0.276	2,630	2,920	3,210	438	2,336		
0.74	8.60	0.308	3,150	3,405	3,660	511	2,724		
2 1/8	9.35	0.340	3,700	4,000	4,300	600	3,200		
	10.50	0.392	4,200	4,540	4,880	681	3,632		
	11.50	0.440	4,500	4,865	5,230	730	3,892		
	7.70	0.216	3,285	3,650	4,015	548	2,920		
	9.20	0.254	3,780	4,200	4,620	630	3,360		
	10.20	0.289	4,740	5,270	5,800	791	4,216		
3 1/2	12.70	0.375	6,210	6,900	7,590	1,035	5,520		
	14.30	0.430	6,930	7,700	8,470	1,155	6,160		
	15.50	0.476	7,500	8,330	9,160	1,250	6,664		
	17.00	0.530	8,000	8,890	9,780	1,334	7,112		
	9.50	0.226	4,410	4,900	5,390	735	3,920		
	10.70	0.262	5,094	5,660	6,230	849	4,528		
	11.60	0.286	5,480	6,090	6,700	914	4,872		
4	13.20	0.330	6,150	6,830	7,510	1,025	5,464		
	14.80	0.380	7,200	8,000	8,800	1,200	6,400		
	16.10	0.415	8,050	8,950	9,840	1,343	7,160		
	11.60	0.250	5,220	5,800	6,380	580	4,640		
	12.60	0.271	5,850	6,500	7,150	650	5,200		
	13.50	0.290	6,390	7,100	7,810	710	5,680		
4.17	15.20	0.337	8,010	8,900	9,790	890	7,120		
4 1/2	17.00	0.380	9,270	10,300	11,330	1,030	8,240		
	18.90	0.430	10,260	11,400	12,540	1,140	9,120		
	21.50	0.500	12,060	13,400	14,740	1,340	10,720		
	23.70	0.560	13,320	14,800	16,280	1,480	11,840		
	13.00	0.253	5,940	6,600	7,260	660	4,950		
	15.00	0.296	7,380	8,200	9,020	820	6,150		
	18.00	0.362	10,080	11,200	12,320	1,120	8,400		
5	21.40	0.437	12,780	14,200	15,620	1,420	10,650		
	23.20	0.478	13,500	15,000	16,500	1,500	11,250		
	24.10	0.500	14,490	16,100	17,710	1,610	12,075		

			125 ksi Grade Torque (ft-lb)					
Size	Weight	Pipe Body		Final Torque	1	Shoulde	r Torque	
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum	
	4.60	0.190	1,530	1,655	1,780	248	1,324	
23/6	5.80	0.254	2,000	2,165	2,330	325	1,732	
2 /0	6.60	0.295	2,345	2,535	2,725	380	2,028	
	7.35	0.336	2,750	2,970	3,190	446	2,376	
	6.40	0.217	2,340	2,530	2,720	380	2,024	
	7.80	0.276	2,800	3,030	3,260	455	2,424	
276	8.60	0.308	3,430	3,710	3,990	557	2,968	
2 78	9.35	0.340	3,950	4,270	4,590	641	3,416	
	10.50	0.392	4,390	4,750	5,110	713	3,800	
	11.50	0.440	4,700	5,080	5,460	762	4,064	
	7.70	0.216	3,465	3,850	4,235	578	3,080	
	9.20	0.254	3,925	4,360	4,795	654	3,488	
	10.20	0.289	5,070	5,630	6,190	845	4,504	
3 1/2	12.70	0.375	6,500	7,220	7,940	1,083	5,776	
	14.30	0.430	7,200	8,000	8,800	1,200	6,400	
	15.50	0.476	8,000	8,890	9,780	1,334	7,112	
	17.00	0.530	8,500	9,445	10,390	1,417	7,556	
	9.50	0.226	4,820	5,360	5,900	804	4,288	
	10.70	0.262	5,490	6,100	6,710	915	4,880	
	11.60	0.286	5,840	6,490	7,140	974	5,192	
4	13.20	0.330	6,570	7,300	8,030	1,095	5,840	
	14.80	0.380	-	-	-	-	-	
	16.10	0.415	8,590	9,545	10,500	1,432	7,636	
	11.60	0.250	5,580	6,200	6,820	620	4,960	
	12.60	0.271	6,300	7,000	7,700	700	5,600	
	13.50	0.290	6,930	7,700	8,470	770	6,160	
4.14	15.20	0.337	8,775	9,750	10,725	975	7,800	
4 72	17.00	0.380	10,215	11,350	12,485	1,135	9,080	
	18.90	0.430	11,250	12,500	13,750	1,250	10,000	
	21.50	0.500	12,780	14,200	15,620	1,420	11,360	
	23.70	0.560	14,380	15,980	17,580	1,598	12,784	
	13.00	0.253	6,480	7,200	7,920	720	5,400	
	15.00	0.296	8,100	9,000	9,900	900	6,750	
F	18.00	0.362	10,710	11,900	13,090	1,190	8,925	
5	21.40	0.437	14,040	15,600	17,160	1,560	11,700	
	23.20	0.478	14,580	16,200	17,820	1,620	12,150	
	24.10	0.500	15,750	17,500	19,250	1,750	13,125	

			140 ksi Grade Torque (ft-lb)						
Size	Weinht	Pine Body		Final Torque			Shoulder Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	4.60	0.190	1,620	1,800	1,980	270	1,440		
0.3/	5.80	0.254	2,250	2,500	2,750	375	2,000		
2 %8	6.60	0.295	2,520	2,800	3,080	420	2,240		
	7.35	0.336	3,150	3,500	3,850	525	2,800		
	6.40	0.217	2,520	2,800	3,080	420	2,240		
	7.80	0.276	3,600	4,000	4,400	600	3,200		
0.7/	8.60	0.308	4,050	4,500	4,950	675	3,600		
2 1/8	9.35	0.340	4,950	5,500	6,050	825	4,400		
	10.50	0.392	5,400	6,000	6,600	900	4,800		
	11.50	0.440	6,120	6,800	7,480	1,020	5,440		
	7.70	0.216	3,465	3,850	4,235	578	3,080		
	9.20	0.254	4,320	4,800	5,280	720	3,840		
	10.20	0.289	6,300	7,000	7,700	1,050	5,600		
3 1/2	12.70	0.375	7,380	8,200	9,020	1,230	6,560		
	14.30	0.430	8,190	9,100	10,010	1,365	7,280		
	15.50	0.476	8,820	9,800	10,780	1,470	7,840		
	17.00	0.530	9,630	10,700	11,770	1,605	8,560		
	9.50	0.226	5,040	5,600	6,160	840	4,480		
	10.70	0.262	6,030	6,700	7,370	1,005	5,360		
	11.60	0.286	-	-	-	-	-		
4	13.20	0.330	6,930	7,700	8,470	1,155	6,160		
	14.80	0.380	-	-	-	-	-		
	16.10	0.415	9,630	10,700	11,770	1,605	8,560		
	11.60	0.250	6,030	6,700	7,370	670	5,360		
	12.60	0.271	6,930	7,700	8,470	770	6,160		
	13.50	0.290	7,740	8,600	9,460	860	6,880		
4.1/	15.20	0.337	9,810	10,900	11,990	1,090	8,720		
4 72	17.00	0.380	11,430	12,700	13,970	1,270	10,160		
	18.90	0.430	12,780	14,200	15,620	1,420	11,360		
	21.50	0.500	14,580	16,200	17,820	1,620	12,960		
	23.70	0.560	16,290	18,100	19,910	1,810	14,480		
	13.00	0.253	7,020	7,800	8,580	780	5,850		
	15.00	0.296	8,820	9,800	10,780	980	7,350		
_	18.00	0.362	12,060	13,400	14,740	1,340	10,050		
0	21.40	0.437	16,020	17,800	19,580	1,780	13,350		
	23.20	0.478	17,730	19,700	21,670	1,970	14,775		
	24.10	0.500	18,540	20,600	22,660	2,060	15,450		

JFEBEAR 🦾 JFEBEAR API

			55 ksi Grade Torque (ft-lb)					
Size	Weinht	Pine Body		Final Torque		Shoulde	r Torque	
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum	
	15.50	0.275	4,590	5,100	5,610	510	3,825	
	17.00	0.304	5,220	5,800	6,380	580	4,350	
E 1/	20.00	0.361	6,660	7,400	8,140	740	5,550	
5 1/2	23.00	0.415	7,830	8,700	9,570	870	6,525	
	26.00	0.476	8,820	9,800	10,780	980	7,350	
	26.80	0.500	9,270	10,300	11,330	1,030	7,725	
6	24.10	0.400	-	-	-	-	-	
	20.00	0.288	5,220	5,800	6,380	406	3,770	
6.5/	24.00	0.352	6,840	7,600	8,360	532	4,940	
0 %9	28.00	0.417	9,090	10,100	11,110	707	6,565	
	32.00	0.475	11,070	12,300	13,530	861	7,995	
	23.00	0.317	6,210	6,900	7,590	483	4,485	
	26.00	0.362	7,470	8,300	9,130	581	5,395	
	29.00	0.408	9,180	10,200	11,220	714	6,630	
_	32.00	0.453	10,710	11,900	13,090	833	7,735	
1	35.00	0.498	11,880	13,200	14,520	924	8,580	
	38.00	0.540	12,510	13,900	15,290	973	9,035	
	42.70	0.625	13,140	14,600	16,060	1,022	9,490	
	46.40	0.687	14,220	15,800	17,380	1,106	10,270	
	29.70	0.375	7,740	8,600	9,460	602	5,590	
	33.70	0.430	8,370	9,300	10,230	651	6,045	
7.5/	39.00	0.500	11,250	12,500	13,750	875	8,125	
1 %	42.80	0.562	13,140	14,600	16,060	1,022	9,490	
	45.30	0.595	13,950	15,500	17,050	1,085	10,075	
	47.10	0.625	-	-	-	-	-	
7 3⁄4	46.10	0.595	-	-	-	-	-	
	32.00	0.352	6,030	6,700	7,370	335	4,355	
	36.00	0.400	7,380	8,200	9,020	410	5,330	
8 5⁄8	40.00	0.450	8,190	9,100	10,010	455	5,915	
	44.00	0.500	9,450	10,500	11,550	525	6,825	
	49.00	0.557	12,060	13,400	14,740	670	8,710	
	36.00	0.352	6,570	7,300	8,030	365	4,745	
	40.00	0.395	7,290	8,100	8,910	405	5,265	
	43.50	0.435	7,920	8,800	9,680	440	5,720	
9 5⁄8	47.00	0.472	9,630	10,700	11,770	535	6,955	
	53.50	0.545	10,890	12,100	13,310	605	7,865	
	58.40	0.595	12,240	13,600	14,960	680	8,840	
	59.40	0.609	13,590	15,100	16,610	755	9,815	

			80, 85 ksi Grade Torque (ft-lb)					
Size	Weight	Pipe Body		Final Torque	1	Shoulde	r Torque	
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum	
	15.50	0.275	5,760	6,400	7,040	640	4,800	
	17.00	0.304	6,660	7,400	8,140	740	5,550	
5 1/2	20.00	0.361	8,640	9,600	10,560	960	7,200	
J 72	23.00	0.415	10,170	11,300	12,430	1,130	8,475	
	26.00	0.476	11,610	12,900	14,190	1,290	9,675	
	26.80	0.500	12,240	13,600	14,960	1,360	10,200	
6	24.10	0.400	11,900	13,220	14,540	1,322	9,915	
	20.00	0.288	6,570	7,300	8,030	511	4,745	
6.5%	24.00	0.352	11,200	12,440	13,690	871	8,086	
0 79	28.00	0.417	14,260	15,840	17,430	1,109	10,296	
	32.00	0.475	14,940	16,600	18,260	1,162	10,790	
	23.00	0.317	10,350	11,500	12,650	805	7,475	
	26.00	0.362	11,800	13,110	14,420	918	8,522	
	29.00	0.408	16,110	17,320	18,530	1,212	11,258	
7	32.00	0.453	22,440	24,260	26,080	1,698	15,769	
	35.00	0.498	22,440	24,930	27,430	1,745	16,205	
	38.00	0.540	22,500	25,000	27,500	1,750	16,250	
	42.70	0.625	25,200	28,000	30,800	1,960	18,200	
	46.40	0.687	26,100	29,000	31,900	2,030	18,850	
	29.70	0.375	9,900	11,000	12,100	770	7,150	
	33.70	0.430	10,890	12,100	13,310	847	7,865	
75%	39.00	0.500	14,940	16,600	18,260	1,162	10,790	
1 /0	42.80	0.562	17,550	19,500	21,450	1,365	12,675	
	45.30	0.595	18,630	20,700	22,770	1,449	13,455	
	47.10	0.625	-	-	-	-	-	
7 3⁄4	46.10	0.595	-	-	-	-	-	
	32.00	0.352	7,650	8,500	9,350	425	5,525	
	36.00	0.400	9,540	10,600	11,660	530	6,890	
8 5⁄8	40.00	0.450	18,000	20,000	22,000	1,000	13,000	
	44.00	0.500	22,680	25,200	27,720	1,260	16,380	
	49.00	0.557	23,220	25,800	28,380	1,290	16,770	
	36.00	0.352	8,190	9,100	10,010	455	5,915	
	40.00	0.395	20,360	22,620	24,880	1,131	14,703	
	43.50	0.435	23,220	25,800	28,380	1,290	16,770	
9 5⁄8	47.00	0.472	23,220	25,800	28,380	1,290	16,770	
	53.50	0.545	23,220	25,800	28,380	1,290	16,770	
	58.40	0.595	23,220	25,800	28,380	1,290	16,770	
	59.40	0.609	23,220	25,800	28,380	1,290	16,770	

			90, 95 ksi Grade Torque (ft-lb)				
Size	Weight	Pine Body		Final Torque		Shoulde	r Torque
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum
	15.50	0.275	6,210	6,900	7,590	690	5,175
	17.00	0.304	7,200	8,000	8,800	800	6,000
E 1/	20.00	0.361	9,450	10,500	11,550	1,050	7,875
5 1/2	23.00	0.415	11,160	12,400	13,640	1,240	9,300
	26.00	0.476	12,690	14,100	15,510	1,410	10,575
	26.80	0.500	13,410	14,900	16,390	1,490	11,175
6	24.10	0.400	13,370	14,850	16,340	1,485	11,138
	20.00	0.288	7,110	7,900	8,690	553	5,135
0.5/	24.00	0.352	13,000	14,440	15,880	1,011	9,386
b %9	28.00	0.417	16,410	18,230	20,050	1,276	11,850
	32.00	0.475	16,410	18,230	20,050	1,276	11,850
	23.00	0.317	12,470	13,480	14,490	944	8,762
	26.00	0.362	13,510	14,600	15,700	1,022	9,490
	29.00	0.408	19,720	21,320	22,920	1,492	13,858
-	32.00	0.453	26,000	28,100	30,200	1,967	18,265
1	35.00	0.498	26,610	28,770	30,930	2,014	18,701
	38.00	0.540	27,210	29,420	31,630	2,059	19,123
	42.70	0.625	27,210	29,420	31,630	2,059	19,123
	46.40	0.687	27,210	29,420	31,630	2,059	19,123
	29.70	0.375	10,800	12,000	13,200	840	7,800
	33.70	0.430	17,820	19,800	21,780	1,386	12,870
7.5/	39.00	0.500	16,380	18,200	20,020	1,274	11,830
1 %	42.80	0.562	18,900	21,000	23,100	1,470	13,650
	45.30	0.595	19,800	22,000	24,200	1,540	14,300
	47.10	0.625	23,220	25,800	28,380	1,290	16,770
7 3⁄4	46.10	0.595	34,020	37,800	41,580	1,890	24,570
	32.00	0.352	8,100	9,000	9,900	450	5,850
	36.00	0.400	9,990	11,100	12,210	555	7,215
8 5⁄8	40.00	0.450	19,350	21,500	23,650	1,075	13,975
	44.00	0.500	23,220	25,800	28,380	1,290	16,770
	49.00	0.557	23,220	25,800	28,380	1,290	16,770
	36.00	0.352	9,000	10,000	11,000	500	6,500
	40.00	0.395	20,360	22,620	24,880	1,131	14,703
	43.50	0.435	23,220	25,800	28,380	1,290	16,770
9 5⁄8	47.00	0.472	23,220	25,800	28,380	1,290	16,770
	53.50	0.545	23,220	25,800	28,380	1,290	16,770
	58.40	0.595	23,220	25,800	28,380	1,290	16,770
	59.40	0.609	23,220	25,800	28,380	1,290	16,770

			105, 110 ksi Grade Torque (ft-lb)					
Size	Weight	Pipe Body	Final Torque			Shoulder Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum	
	15.50	0.275	6,930	7,700	8,470	770	5,775	
	17.00	0.304	8,010	8,900	9,790	890	6,675	
5 ½	20.00	0.361	10,530	11,700	12,870	1,170	8,775	
J 72	23.00	0.415	15,010	16,680	18,350	1,668	12,510	
	26.00	0.476	15,010	16,680	18,350	1,668	12,510	
	26.80	0.500	15,010	16,680	18,350	1,668	12,510	
6	24.10	0.400	15,480	17,200	18,920	1,720	12,900	
	20.00	0.288	7,560	8,400	9,240	588	5,460	
6 %	24.00	0.352	13,000	14,440	15,880	1,011	9,386	
	28.00	0.417	16,410	18,230	20,050	1,276	11,850	
	32.00	0.475	17,000	18,890	20,780	1,322	12,279	
	23.00	0.317	12,470	13,480	14,490	944	8,762	
	26.00	0.362	13,510	14,600	15,700	1,022	9,490	
	29.00	0.408	19,720	21,320	22,920	1,492	13,858	
7	32.00	0.453	26,000	28,100	30,200	1,967	18,265	
	35.00	0.498	26,610	28,770	30,930	2,014	18,701	
	38.00	0.540	27,210	29,420	31,630	2,059	19,123	
	42.70	0.625	27,210	29,420	31,630	2,059	19,123	
	46.40	0.687	27,210	29,420	31,630	2,059	19,123	
	29.70	0.375	11,520	12,800	14,080	896	8,320	
	33.70	0.430	12,780	14,200	15,620	994	9,230	
7.5%	39.00	0.500	17,730	19,700	21,670	1,379	12,805	
1 78	42.80	0.562	20,880	23,200	25,520	1,624	15,080	
	45.30	0.595	22,230	24,700	27,170	1,729	16,055	
	47.10	0.625	-	-	-	-	-	
7 ¾	46.10	0.595	35,010	38,900	42,790	1,945	25,285	
	32.00	0.352	8,460	9,400	10,340	470	6,110	
	36.00	0.400	10,980	12,200	13,420	610	7,930	
8 5⁄8	40.00	0.450	20,700	23,000	25,300	1,150	14,950	
	44.00	0.500	23,220	25,800	28,380	1,290	16,770	
	49.00	0.557	23,220	25,800	28,380	1,290	16,770	
	36.00	0.352	9,540	10,600	11,660	530	6,890	
	40.00	0.395	20,360	22,620	24,880	1,131	14,703	
	43.50	0.435	23,220	25,800	28,380	1,290	16,770	
9 5⁄8	47.00	0.472	23,220	25,800	28,380	1,290	16,770	
	53.50	0.545	23,220	25,800	28,380	1,290	16,770	
	58.40	0.595	23,220	25,800	28,380	1,290	16,770	
	59.40	0.609	23,220	25,800	28,380	1,290	16,770	

				125 ksi	Grade Torq	ue (ft-lb)	
Size	Weight	Pipe Body		Final Torque		Shoulde	r Torque
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum
	15.50	0.275	7,110	7,900	8,690	790	5,925
	17.00	0.304	8,550	9,500	10,450	950	7,125
5 1/2	20.00	0.361	10,980	12,200	13,420	1,220	9,150
J 72	23.00	0.415	15,010	16,680	18,350	1,668	12,510
	26.00	0.476	15,010	16,680	18,350	1,668	12,510
	26.80	0.500	15,010	16,680	18,350	1,668	12,510
6	24.10	0.400	16,670	18,520	20,370	1,852	13,890
	20.00	0.288	8,190	9,100	10,010	637	5,915
654	24.00	0.352	13,000	14,440	15,880	1,011	9,386
0 %9	28.00	0.417	16,410	18,230	20,050	1,276	11,850
	32.00	0.475	17,000	18,890	20,780	1,322	12,279
	23.00	0.317	12,470	13,480	14,490	944	8,762
	26.00	0.362	13,510	14,600	15,700	1,022	9,490
	29.00	0.408	19,720	21,320	22,920	1,492	13,858
7	32.00	0.453	26,000	28,100	30,200	1,967	18,265
1	35.00	0.498	26,610	28,770	30,930	2,014	18,701
	38.00	0.540	27,210	29,420	31,630	2,059	19,123
	42.70	0.625	27,210	29,420	31,630	2,059	19,123
	46.40	0.687	27,210	29,420	31,630	2,059	19,123
	29.70	0.375	12,150	13,500	14,850	945	8,775
	33.70	0.430	13,230	14,700	16,170	1,029	9,555
7.5/	39.00	0.500	18,450	20,500	22,550	1,435	13,325
1 %	42.80	0.562	22,500	25,000	27,500	1,750	16,250
	45.30	0.595	24,030	26,700	29,370	1,869	17,355
	47.10	0.625	-	-	-	-	-
7 3⁄4	46.10	0.595	-	-	-	-	-
	32.00	0.352	9,360	10,400	11,440	520	6,760
	36.00	0.400	11,520	12,800	14,080	640	8,320
8 5⁄8	40.00	0.450	22,050	24,500	26,950	1,225	15,925
	44.00	0.500	23,220	25,800	28,380	1,290	16,770
	49.00	0.557	23,220	25,800	28,380	1,290	16,770
	36.00	0.352	10,170	11,300	12,430	565	7,345
	40.00	0.395	20,360	22,620	24,880	1,131	14,703
	43.50	0.435	23,220	25,800	28,380	1,290	16,770
9 5⁄8	47.00	0.472	23,220	25,800	28,380	1,290	16,770
	53.50	0.545	23,220	25,800	28,380	1,290	16,770
	58.40	0.595	23,220	25,800	28,380	1,290	16,770
	59.40	0.609	23,400	26,000	28,600	1,300	16,900

				140 ksi	Grade Torq	ue (ft-lb)		
Size	Weiaht	Pipe Body		Final Torque	1	Shoulde	Shoulder Torque	
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum	
	15.50	0.275	8,100	9,000	9,900	900	6,750	
	17.00	0.304	9,900	11,000	12,100	1,100	8,250	
5 1/2	20.00	0.361	13,500	15,000	16,500	1,500	11,250	
J 72	23.00	0.415	16,200	18,000	19,800	1,800	13,500	
	26.00	0.476	17,100	19,000	20,900	1,900	14,250	
	26.80	0.500	18,000	20,000	22,000	2,000	15,000	
6	24.10	0.400	-	-	-	-	-	
	20.00	0.288	9,090	10,100	11,110	707	6,565	
6.5%	24.00	0.352	13,000	14,440	15,880	1,011	9,386	
0 %9	28.00	0.417	17,370	19,300	21,230	1,351	12,545	
	32.00	0.475	21,960	24,400	26,840	1,708	15,860	
	23.00	0.317	12,470	13,480	14,490	944	8,762	
	26.00	0.362	14,130	15,700	21,450	1,099	10,205	
	29.00	0.408	19,720	21,320	22,920	1,492	13,858	
7	32.00	0.453	26,000	28,100	30,200	1,967	18,265	
'	35.00	0.498	26,610	28,770	30,930	2,014	18,701	
	38.00	0.540	27,210	29,420	31,630	2,059	19,123	
	42.70	0.625	27,210	29,420	31,630	2,059	19,123	
	46.40	0.687	27,210	29,420	31,630	2,059	19,123	
	29.70	0.375	13,680	15,200	16,720	1,064	9,880	
	33.70	0.430	15,210	16,900	18,590	1,183	10,985	
7.5%	39.00	0.500	21,420	23,800	26,180	1,666	15,470	
1 78	42.80	0.562	25,380	28,200	31,020	1,974	18,330	
	45.30	0.595	27,000	30,000	33,000	2,100	19,500	
	47.10	0.625	-	-	-	-	-	
7 3⁄4	46.10	0.595	-	-	-	-	-	
	32.00	0.352	10,440	11,600	12,760	580	7,540	
	36.00	0.400	13,050	14,500	15,950	725	9,425	
8 5⁄8	40.00	0.450	22,050	24,500	26,950	1,225	15,925	
	44.00	0.500	23,220	25,800	28,380	1,290	16,770	
	49.00	0.557	23,220	25,800	28,380	1,290	16,770	
	36.00	0.352	11,160	12,400	13,640	620	8,060	
	40.00	0.395	20,360	22,620	24,880	1,131	14,703	
	43.50	0.435	23,220	25,800	28,380	1,290	16,770	
9 5⁄8	47.00	0.472	23,220	25,800	28,380	1,290	16,770	
	53.50	0.545	23,220	25,800	28,380	1,290	16,770	
	58.40	0.595	23,400	26,000	28,600	1,300	16,900	
	59.40	0.609	26,370	29,300	32,230	1,465	19,045	

Clear-Run for Chrome Grades ≥ 9%Cr

			80, 85 ksi Grade Torque (ft-lb)						
Size	Weight	Pipe Body		Final Torque	1	Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	4.60	0.190	2,040	2,210	2,380	330	1,770		
2 3⁄8	5.80	0.254	2,750	2,980	3,200	450	2,380		
	6.60	0.295	3,080	3,330	3,590	500	2,670		
	7.35	0.336	3,600	3,900	4,200	590	3,120		
276	6.40	0.217	3,210	3,470	3,720	520	2,770		
	7.80	0.276	4,000	4,320	4,640	650	3,450		
	8.60	0.308	4,470	4,830	5,190	720	3,860		
2 78	9.35	0.340	5,100	5,520	5,930	830	4,410		
	10.50	0.392	5,780	6,250	6,720	940	5,000		
	11.50	0.440	6,290	6,800	7,310	1,020	5,440		
	7.70	0.216	3,860	4,280	4,710	640	3,420		
	9.20	0.254	5,250	5,810	6,360	870	4,640		
	10.20	0.289	6,060	6,740	7,410	1,010	5,390		
3 1⁄2	12.70	0.375	7,070	7,850	8,640	1,180	6,280		
	14.30	0.430	8,210	9,120	10,040	1,370	7,300		
	15.50	0.476	9,590	10,650	11,720	1,600	8,520		
	17.00	0.530	10,260	11,400	12,540	1,710	9,120		
	9.50	0.226	5,200	5,620	6,040	840	4,490		
	10.70	0.262	5,940	6,600	7,280	990	5,280		
4	11.60	0.286	6,590	7,320	8,060	1,100	5,860		
4	13.20	0.330	7,500	8,330	9,170	1,250	6,660		
	14.80	0.380	8,780	9,750	10,730	1,460	7,800		
	16.10	0.415	9,830	10,910	12,000	1,640	8,720		
	11.60	0.250	5,510	6,130	6,740	610	4,900		
	12.60	0.271	6,080	6,750	7,430	680	5,400		
	13.50	0.290	6,750	7,500	8,250	750	6,000		
1 1/2	15.20	0.337	8,210	9,130	10,040	910	7,300		
4 72	17.00	0.380	9,340	10,380	11,410	1,040	8,300		
	18.90	0.430	10,800	12,000	13,200	1,200	9,600		
	21.50	0.500	12,600	14,000	15,400	1,400	11,200		
	23.70	0.560	14,060	15,630	17,190	1,560	12,500		
	13.00	0.253	6,440	7,150	7,870	720	5,360		
	15.00	0.296	7,960	8,840	9,720	880	6,630		
5	18.00	0.362	10,190	11,320	12,450	1,130	8,490		
5	21.40	0.437	12,740	14,170	15,600	1,420	10,630		
	23.20	0.478	14,860	16,510	18,160	1,650	12,380		
	24.10	0.500	15,560	17,290	19,020	1,730	12,970		

			90, 95 ksi Grade Torque (ft-lb)					
Size	Weinht	Pine Rody		Final Torque			r Torque	
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum	
	4.60	0.190	2,350	2,530	2,720	380	2,030	
0.37	5.80	0.254	3,060	3,310	3,550	500	2,650	
2 %	6.60	0.295	3,370	3,620	3,880	540	2,900	
Γ	7.35	0.336	3,980	4,300	4,620	650	3,440	
2 7/8	6.40	0.217	3,370	3,640	3,910	550	2,910	
	7.80	0.276	4,230	4,570	4,910	690	3,660	
	8.60	0.308	5,000	5,390	5,780	810	4,310	
2 1/8	9.35	0.340	5,780	6,250	6,720	940	5,000	
Ī	10.50	0.392	6,730	7,280	7,820	1,090	5,820	
ĺ	11.50	0.440	7,140	7,720	8,300	1,160	6,170	
ĺ	7.70	0.216	4,730	5,250	5,780	790	4,200	
Ī	9.20	0.254	5,460	6,060	6,680	910	4,850	
Ī	10.20	0.289	7,040	7,820	8,600	1,170	6,250	
3 1/2	12.70	0.375	8,580	9,540	10,500	1,430	7,630	
ľ	14.30	0.430	10,260	11,400	12,540	1,710	9,120	
	15.50	0.476	10,400	11,550	12,710	1,730	9,240	
ĺ	17.00	0.530	10,940	12,150	13,370	1,820	9,720	
	9.50	0.226	5,990	6,650	7,310	1,000	5,320	
Ī	10.70	0.262	7,380	8,210	9,030	1,230	6,560	
. [11.60	0.286	8,060	8,960	9,860	1,340	7,160	
4	13.20	0.330	9,120	10,140	11,150	1,520	8,110	
Ī	14.80	0.380	10,130	11,250	12,380	1,690	9,000	
Ī	16.10	0.415	11,720	12,660	13,620	1,900	10,130	
ĺ	11.60	0.250	5,960	6,630	7,290	660	5,300	
Ī	12.60	0.271	6,640	7,380	8,110	740	5,900	
Ī	13.50	0.290	7,400	8,230	9,050	820	6,580	
	15.20	0.337	8,890	9,880	10,860	990	7,900	
4 1/2	17.00	0.380	10,180	11,310	12,490	1,130	9,050	
Ī	18.90	0.430	11,480	12,750	14,030	1,280	10,200	
ľ	21.50	0.500	13,500	15,000	16,500	1,500	12,000	
ľ	23.70	0.560	14,740	16,380	18,010	1,640	13,100	
İ	13.00	0.253	6,900	7,670	8,440	770	5,750	
Ī	15.00	0.296	8,310	9,230	10,150	920	6,920	
	18.00	0.362	10,620	11,800	12,990	1,180	8,850	
5	21.40	0.437	13,520	15,030	16,540	1,500	11,270	
ŀ	23.20	0.478	15,560	17,290	19,020	1,730	12,970	
ŀ	24.10	0.500	16.260	18,070	19.880	1,810	13.550	

Clear-Run for Chrome Grades ≥ 9%Cr

			105, 110 ksi Grade Torque (ft-lb)						
Size	Weight	Pipe Bodv		Final Torque		Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
2 3/8	4.60	0.190	2,380	2,570	2,750	390	2,050		
	5.80	0.254	3,080	3,330	3,590	500	2,670		
2 78	6.60	0.295	3,660	3,950	4,250	590	3,160		
	7.35	0.336	4,170	4,510	4,850	680	3,600		
2 7⁄8	6.40	0.217	3,550	3,940	4,340	590	3,160		
	7.80	0.276	4,470	4,960	5,460	740	3,970		
	8.60	0.308	5,360	5,790	6,220	870	4,630		
	9.35	0.340	6,290	6,800	7,310	1,020	5,440		
	10.50	0.392	7,140	7,720	8,300	1,160	6,170		
	11.50	0.440	7,650	8,270	8,890	1,240	6,620		
	7.70	0.216	4,930	5,480	6,020	820	4,380		
	9.20	0.254	5,670	6,300	6,930	950	5,040		
	10.20	0.289	7,110	7,910	8,700	1,190	6,320		
3 ½	12.70	0.375	9,320	10,350	11,390	1,550	8,280		
	14.30	0.430	10,400	11,550	12,710	1,730	9,240		
	15.50	0.476	11,250	12,500	13,740	1,870	10,000		
	17.00	0.530	12,000	13,340	14,670	2,000	10,670		
	9.50	0.226	6,620	7,350	8,090	1,100	5,880		
	10.70	0.262	7,640	8,490	9,350	1,270	6,790		
4	11.60	0.286	8,220	9,140	10,050	1,370	7,310		
4	13.20	0.330	9,230	10,250	11,270	1,540	8,200		
	14.80	0.380	10,800	12,000	13,200	1,800	9,600		
	16.10	0.415	12,080	13,430	14,760	2,010	10,740		
	11.60	0.250	6,530	7,250	7,980	730	5,800		
	12.60	0.271	7,310	8,130	8,940	810	6,500		
	13.50	0.290	7,990	8,880	9,760	890	7,100		
116	15.20	0.337	10,010	11,130	12,240	1,110	8,900		
4 /2	17.00	0.380	11,590	12,880	14,160	1,290	10,300		
	18.90	0.430	12,830	14,250	15,680	1,430	11,400		
	21.50	0.500	15,080	16,750	18,430	1,680	13,400		
	23.70	0.560	16,650	18,500	20,350	1,850	14,800		
	13.00	0.253	7,720	8,580	9,440	860	6,440		
	15.00	0.296	9,590	10,660	11,730	1,070	8,000		
F	18.00	0.362	13,100	14,560	16,020	1,460	10,920		
J	21.40	0.437	16,610	18,460	20,310	1,850	13,850		
	23.20	0.478	17,550	19,500	21,450	1,950	14,630		
	24.10	0.500	18,840	20,930	23,020	2,090	15,700		

				125 ksi	Grade Torq	ue (ft-lb)	
Size	Weinht	Pine Body		Final Torque)	Shoulde	r Torque
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum
	4.60	0.190	2,600	2,810	3,030	420	2,250
0.3/	5.80	0.254	3,400	3,680	3,960	550	2,940
2 %8	6.60	0.295	3,990	4,310	4,630	650	3,450
	7.35	0.336	4,680	5,050	5,420	760	4,040
	6.40	0.217	3,980	4,300	4,620	650	3,440
2 7⁄8	7.80	0.276	4,760	5,150	5,540	770	4,120
	8.60	0.308	5,830	6,310	6,780	950	5,050
2 1/8	9.35	0.340	6,720	7,260	7,800	1,090	5,810
	10.50	0.392	7,460	8,080	8,690	1,210	6,460
	11.50	0.440	7,990	8,640	9,280	1,300	6,910
	7.70	0.216	5,200	5,780	6,350	870	4,620
	9.20	0.254	5,890	6,540	7,190	980	5,230
	10.20	0.289	7,610	8,450	9,290	1,270	6,760
3 ½	12.70	0.375	9,750	10,830	11,910	1,620	8,660
	14.30	0.430	10,800	12,000	13,200	1,800	9,600
	15.50	0.476	12,000	13,340	14,670	2,000	10,670
	17.00	0.530	12,750	14,170	15,580	2,130	11,330
	9.50	0.226	7,230	8,040	8,850	1,210	6,430
	10.70	0.262	8,240	9,150	10,070	1,370	7,320
4	11.60	0.286	8,760	9,740	10,710	1,460	7,790
4	13.20	0.330	9,860	10,950	12,050	1,640	8,760
	14.80	0.380	-	-	-	-	-
	16.10	0.415	12,890	14,320	15,750	2,150	11,450
	11.60	0.250	6,980	7,750	8,530	780	6,200
	12.60	0.271	7,880	8,750	9,630	880	7,000
	13.50	0.290	8,660	9,630	10,590	960	7,700
4 14	15.20	0.337	10,970	12,190	13,410	1,220	9,750
4 72	17.00	0.380	12,770	14,190	15,610	1,420	11,350
	18.90	0.430	14,060	15,630	17,190	1,560	12,500
	21.50	0.500	15,980	17,750	19,530	1,780	14,200
	23.70	0.560	17,980	19,980	21,980	2,000	15,980
	13.00	0.253	8,420	9,360	10,300	940	7,020
	15.00	0.296	10,530	11,700	12,870	1,170	8,780
F	18.00	0.362	13,920	15,470	17,020	1,550	11,600
5	21.40	0.437	18,250	20,280	22,310	2,030	15,210
	23.20	0.478	18,950	21,060	23,170	2,110	15,800
	24.10	0.500	20,480	22,750	25,030	2,280	17,060

Clear-Run for Chrome Grades ≥ 9%Cr

			140 ksi Grade Torque (ft-lb)						
Size	Weiaht	Pipe Body		Final Torque	e Shoulder Torque				
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
2 3/8	4.60	0.190	2,750	3,060	3,370	460	2,450		
	5.80	0.254	3,830	4,250	4,680	640	3,400		
	6.60	0.295	4,280	4,760	5,240	710	3,810		
	7.35	0.336	5,360	5,950	6,550	890	4,760		
0.74	6.40	0.217	4,280	4,760	5,240	710	3,810		
	7.80	0.276	6,120	6,800	7,480	1,020	5,440		
	8.60	0.308	6,890	7,650	8,420	1,150	6,120		
2 78	9.35	0.340	8,420	9,350	10,290	1,400	7,480		
	10.50	0.392	9,180	10,200	11,220	1,530	8,160		
	11.50	0.440	10,400	11,560	12,720	1,730	9,250		
	7.70	0.216	5,200	5,780	6,350	870	4,620		
	9.20	0.254	6,480	7,200	7,920	1,080	5,760		
	10.20	0.289	9,450	10,500	11,550	1,580	8,400		
3 ½	12.70	0.375	11,070	12,300	13,530	1,850	9,840		
	14.30	0.430	12,290	13,650	15,020	2,050	10,920		
	15.50	0.476	13,230	14,700	16,170	2,210	11,760		
	17.00	0.530	14,450	16,050	17,660	2,410	12,840		
	9.50	0.226	7,560	8,400	9,240	1,260	6,720		
	10.70	0.262	9,050	10,050	11,060	1,510	8,040		
4	11.60	0.286	-	-	-	-	-		
4	13.20	0.330	10,400	11,550	12,710	1,730	9,240		
	14.80	0.380	-	-	-	-	-		
	16.10	0.415	14,450	16,050	17,660	2,410	12,840		
	11.60	0.250	7,540	8,380	9,210	840	6,700		
	12.60	0.271	8,660	9,630	10,590	960	7,700		
	13.50	0.290	9,680	10,750	11,830	1,080	8,600		
4.14	15.20	0.337	12,260	13,630	14,990	1,360	10,900		
4 72	17.00	0.380	14,290	15,880	17,460	1,590	12,700		
	18.90	0.430	15,980	17,750	19,530	1,780	14,200		
	21.50	0.500	18,230	20,250	22,280	2,030	16,200		
	23.70	0.560	20,360	22,630	24,890	2,260	18,100		
	13.00	0.253	9,130	10,140	11,150	1,010	7,610		
	15.00	0.296	11,470	12,740	14,010	1,270	9,560		
5	18.00	0.362	15,680	17,420	19,160	1,740	13,070		
Э	21.40	0.437	20,830	23,140	25,450	2,310	17,360		
	23.20	0.478	23,050	25,610	28,170	2,560	19,210		
	24.10	0.500	24,100	26,780	29,460	2,680	20,090		

			80, 85 ksi Grade Torque (ft-lb)					
Size	Weinht	Pine Body		Final Torque	1	Shoulde	r Torque	
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum	
	15.50	0.275	7,490	8,320	9,150	830	6,240	
Ī	17.00	0.304	8,660	9,620	10,580	960	7,220	
E 1/	20.00	0.361	11,230	12,480	13,730	1,250	9,360	
5 1/2	23.00	0.415	13,220	14,690	16,160	1,470	11,020	
ſ	26.00	0.476	15,090	16,770	18,450	1,680	12,580	
ĺ	26.80	0.500	15,910	17,680	19,450	1,770	13,260	
6	24.10	0.400	15,470	17,190	18,900	1,720	12,890	
	20.00	0.288	8,540	9,490	10,440	660	6,170	
6 5⁄9	24.00	0.352	14,560	16,170	17,800	1,130	10,510	
6 %	28.00	0.417	18,540	20,590	22,660	1,440	13,380	
ſ	32.00	0.475	19,420	21,580	23,740	1,510	14,030	
	23.00	0.317	13,460	14,950	16,450	1,050	9,720	
[26.00	0.362	15,340	17,040	18,750	1,190	11,080	
[29.00	0.408	20,940	22,520	24,090	1,580	14,640	
_ [32.00	0.453	29,170	31,540	33,900	2,210	20,500	
'[35.00	0.498	29,170	32,410	35,660	2,270	21,070	
[38.00	0.540	29,250	32,500	35,750	2,280	21,130	
	42.70	0.625	32,760	36,400	40,040	2,550	23,660	
	46.40	0.687	33,930	37,700	41,470	2,640	24,510	
	29.70	0.375	12,870	14,300	15,730	1,000	9,300	
[33.70	0.430	14,160	15,730	17,300	1,100	10,220	
75/	39.00	0.500	19,420	21,580	23,740	1,510	14,030	
/ 1/8	42.80	0.562	22,820	25,350	27,890	1,770	16,480	
	45.30	0.595	24,220	26,910	29,600	1,880	17,490	
	47.10	0.625	-	-	-	-	-	
7 3⁄4	46.10	0.595	-	-	-	-	-	
	32.00	0.352	9,950	11,050	12,160	550	7,180	
	36.00	0.400	12,400	13,780	15,160	690	8,960	
8 5/8	40.00	0.450	23,400	26,000	28,600	1,300	16,900	
	44.00	0.500	29,480	32,760	36,040	1,640	21,290	
	49.00	0.557	30,190	33,540	36,890	1,680	21,800	
Ţ	36.00	0.352	10,650	11,830	13,010	590	7,690	
[40.00	0.395	26,470	29,410	32,340	1,470	19,110	
[43.50	0.435	30,190	33,540	36,890	1,680	21,800	
9 5⁄8	47.00	0.472	30,190	33,540	36,890	1,680	21,800	
[53.50	0.545	30,190	33,540	36,890	1,680	21,800	
[58.40	0.595	30,190	33,540	36,890	1,680	21,800	
[59.40	0.609	30.190	33.540	36.890	1.680	21.800	

Clear-Run for Chrome Grades ≥ 9%Cr

			90, 95 ksi Grade Torque (ft-lb)						
Size	Weight	Pipe Body		Final Torque		Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	15.50	0.275	8,070	8,970	9,870	900	6,730		
	17.00	0.304	9,360	10,400	11,440	1,040	7,800		
5 1/	20.00	0.361	12,290	13,650	15,020	1,370	10,240		
J 72	23.00	0.415	14,510	16,120	17,730	1,610	12,090		
	26.00	0.476	16,500	18,330	20,160	1,830	13,750		
	26.80	0.500	17,430	19,370	21,310	1,940	14,530		
6	24.10	0.400	17,380	19,310	21,240	1,930	14,480		
	20.00	0.288	9,240	10,270	11,300	720	6,680		
65%	24.00	0.352	16,900	18,770	20,640	1,310	12,200		
0 %9	28.00	0.417	21,330	23,700	26,070	1,660	15,400		
	32.00	0.475	21,330	23,700	26,070	1,660	15,400		
	23.00	0.317	16,210	17,520	18,840	1,230	11,390		
	26.00	0.362	17,560	18,980	20,410	1,330	12,340		
	29.00	0.408	25,640	27,720	29,800	1,940	18,020		
7	32.00	0.453	33,800	36,530	39,260	2,560	23,740		
'	35.00	0.498	34,590	37,400	40,210	2,620	24,310		
	38.00	0.540	35,370	38,250	41,120	2,680	24,860		
	42.70	0.625	35,370	38,250	41,120	2,680	24,860		
	46.40	0.687	35,370	38,250	41,120	2,680	24,860		
	29.70	0.375	14,040	15,600	17,160	1,090	10,140		
	33.70	0.430	23,170	25,740	28,310	1,800	16,730		
754	39.00	0.500	21,290	23,660	26,030	1,660	15,380		
1 78	42.80	0.562	24,570	27,300	30,030	1,910	17,750		
	45.30	0.595	25,740	28,600	31,460	2,000	18,590		
	47.10	0.625	30,190	33,540	36,890	2,348	21,800		
7 ¾	46.10	0.595	44,230	49,140	54,050	2,460	31,940		
	32.00	0.352	10,530	11,700	12,870	590	7,610		
	36.00	0.400	12,990	14,430	15,870	720	9,380		
8 5/8	40.00	0.450	25,160	27,950	30,750	1,400	18,170		
	44.00	0.500	30,190	33,540	36,890	1,680	21,800		
	49.00	0.557	30,190	33,540	36,890	1,680	21,800		
	36.00	0.352	11,700	13,000	14,300	650	8,450		
	40.00	0.395	26,470	29,410	32,340	1,470	19,110		
	43.50	0.435	30,190	33,540	36,890	1,680	21,800		
9 5⁄8	47.00	0.472	30,190	33,540	36,890	1,680	21,800		
	53.50	0.545	30,190	33,540	36,890	1,680	21,800		
	58.40	0.595	30,190	33,540	36,890	1,680	21,800		
	59.40	0.609	30,190	33,540	36,890	1,680	21,800		

			105, 110 ksi Grade Torque (ft-lb)					
Size	Weinht	Pine Rody		Final Torque	1	Shoulde	r Torque	
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum	
	15.50	0.275	9,010	10,010	11,010	1,000	7,510	
[17.00	0.304	10,410	11,570	12,730	1,160	8,680	
E 1/	20.00	0.361	13,690	15,210	16,730	1,520	11,410	
5 1/2	23.00	0.415	19,510	21,680	23,860	2,170	16,260	
	26.00	0.476	19,510	21,680	23,860	2,170	16,260	
	26.80	0.500	19,510	21,680	23,860	2,170	16,260	
6	24.10	0.400	20,120	22,360	24,600	2,240	16,770	
	20.00	0.288	9,830	10,920	12,010	760	7,100	
6 %	24.00	0.352	16,900	18,770	20,640	1,310	12,200	
6 %9	28.00	0.417	21,330	23,700	26,070	1,660	15,400	
	32.00	0.475	22,100	24,560	27,010	1,720	15,960	
	23.00	0.317	16,210	17,520	18,840	1,230	11,390	
[26.00	0.362	17,560	18,980	20,410	1,330	12,340	
[29.00	0.408	25,640	27,720	29,800	1,940	18,020	
_	32.00	0.453	33,800	36,530	39,260	2,560	23,740	
' [35.00	0.498	34,590	37,400	40,210	2,620	24,310	
[38.00	0.540	35,370	38,250	41,120	2,680	24,860	
	42.70	0.625	35,370	38,250	41,120	2,680	24,860	
	46.40	0.687	35,370	38,250	41,120	2,680	24,860	
	29.70	0.375	14,980	16,640	18,300	1,160	10,820	
[33.70	0.430	16,610	18,460	20,310	1,290	12,000	
75/	39.00	0.500	23,050	25,610	28,170	1,790	16,650	
1 %8	42.80	0.562	27,140	30,160	33,180	2,110	19,600	
[45.30	0.595	28,900	32,110	35,320	2,250	20,870	
	47.10	0.625	-	-	-	-	-	
7 3⁄4	46.10	0.595	45,510	50,570	55,630	2,530	32,870	
	32.00	0.352	11,000	12,220	13,440	610	7,940	
	36.00	0.400	14,270	15,860	17,450	790	10,310	
8 5⁄8	40.00	0.450	26,910	29,900	32,890	1,500	19,440	
[44.00	0.500	30,190	33,540	36,890	1,680	21,800	
	49.00	0.557	30,190	33,540	36,890	1,680	21,800	
	36.00	0.352	12,400	13,780	15,160	690	8,960	
	40.00	0.395	26,470	29,410	32,340	1,470	19,110	
	43.50	0.435	30,190	33,540	36,890	1,680	21,800	
9 5⁄8	47.00	0.472	30,190	33,540	36,890	1,680	21,800	
	53.50	0.545	30,190	33,540	36,890	1,680	21,800	
ĺ	58.40	0.595	30,190	33,540	36,890	1,680	21,800	
ĺ	59.40	0.609	30,190	33,540	36,890	1,680	21,800	

Clear-Run for Chrome Grades ≥ 9%Cr

			125 ksi Grade Torque (ft-lb)						
Size	Weight	Pipe Body	Final Torque Shoulder Torque						
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	15.50	0.275	9,240	10,270	11,300	1,030	7,700		
5 1/2	17.00	0.304	11,120	12,350	13,590	1,240	9,260		
5 14	20.00	0.361	14,270	15,860	17,450	1,590	11,900		
J 72	23.00	0.415	19,510	21,680	23,860	2,170	16,260		
	26.00	0.476	19,510	21,680	23,860	2,170	16,260		
	26.80	0.500	19,510	21,680	23,860	2,170	16,260		
6	24.10	0.400	21,670	24,080	26,480	2,410	18,060		
	20.00	0.288	10,650	11,830	13,010	830	7,690		
6.5/	24.00	0.352	16,900	18,770	20,640	1,310	12,200		
0 79	28.00	0.417	21,330	23,700	26,070	1,660	15,400		
	32.00	0.475	22,100	24,560	27,010	1,720	15,960		
	23.00	0.317	16,210	17,520	18,840	1,230	11,390		
	26.00	0.362	17,560	18,980	20,410	1,330	12,340		
	29.00	0.408	25,640	27,720	29,800	1,940	18,020		
7	32.00	0.453	33,800	36,530	39,260	2,560	23,740		
	35.00	0.498	34,590	37,400	40,210	2,620	24,310		
	38.00	0.540	35,370	38,250	41,120	2,680	24,860		
	42.70	0.625	35,370	38,250	41,120	2,680	24,860		
	46.40	0.687	35,370	38,250	41,120	2,680	24,860		
	29.70	0.375	15,800	17,550	19,310	1,230	11,410		
	33.70	0.430	17,200	19,110	21,020	1,340	12,420		
7.54	39.00	0.500	23,990	26,650	29,320	1,870	17,320		
1 78	42.80	0.562	29,250	32,500	35,750	2,280	21,130		
	45.30	0.595	31,240	34,710	38,180	2,430	22,560		
	47.10	0.625	-	-	-	-	-		
7 ¾	46.10	0.595	-	-	-	-	-		
	32.00	0.352	12,170	13,520	14,870	680	8,790		
	36.00	0.400	14,980	16,640	18,300	830	10,820		
8 5⁄8	40.00	0.450	28,670	31,850	35,040	1,590	20,700		
	44.00	0.500	30,190	33,540	36,890	1,680	21,800		
	49.00	0.557	30,190	33,540	36,890	1,680	21,800		
	36.00	0.352	13,220	14,690	16,160	730	9,550		
	40.00	0.395	26,470	29,410	32,340	1,470	19,110		
	43.50	0.435	30,190	33,540	36,890	1,680	21,800		
9 5⁄8	47.00	0.472	30,190	33,540	36,890	1,680	21,800		
	53.50	0.545	30,190	33,540	36,890	1,680	21,800		
	58.40	0.595	30,190	33,540	36,890	1,680	21,800		
	59.40	0.609	30,420	33,800	37,180	1,690	21,970		

			140 ksi Grade Torque (ft-lb)						
Size	Weinht	Pine Body		Final Torque)	Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
5 ½	15.50	0.275	10,530	11,700	12,870	1,170	8,780		
	17.00	0.304	12,870	14,300	15,730	1,430	10,730		
	20.00	0.361	17,550	19,500	21,450	1,950	14,630		
	23.00	0.415	21,060	23,400	25,740	2,340	17,550		
	26.00	0.476	22,230	24,700	27,170	2,470	18,530		
	26.80	0.500	23,400	26,000	28,600	2,600	19,500		
6	24.10	0.400	-	-	-	-	-		
	20.00	0.288	11,820	13,130	14,440	920	8,530		
6 5/6	24.00	0.352	16,900	18,770	20,640	1,310	12,200		
0 %9	28.00	0.417	22,580	25,090	27,600	1,760	16,310		
	32.00	0.475	28,550	31,720	34,890	2,220	20,620		
	23.00	0.317	16,210	17,520	18,840	1,230	11,390		
[26.00	0.362	18,370	20,410	27,890	1,430	13,270		
	29.00	0.408	25,640	27,720	29,800	1,940	18,020		
-	32.00	0.453	33,800	36,530	39,260	2,560	23,740		
' [35.00	0.498	34,590	37,400	40,210	2,620	24,310		
[38.00	0.540	35,370	38,250	41,120	2,680	24,860		
	42.70	0.625	35,370	38,250	41,120	2,680	24,860		
	46.40	0.687	35,370	38,250	41,120	2,680	24,860		
	29.70	0.375	17,780	19,760	21,740	1,380	12,840		
	33.70	0.430	19,770	21,970	24,170	1,540	14,280		
7.54	39.00	0.500	27,850	30,940	34,030	2,170	20,110		
1 %8	42.80	0.562	32,990	36,660	40,330	2,570	23,830		
[45.30	0.595	35,100	39,000	42,900	2,730	25,350		
	47.10	0.625	-	-	-	-	-		
7 3⁄4	46.10	0.595	-	-	-	-	-		
	32.00	0.352	13,570	15,080	16,590	750	9,800		
	36.00	0.400	16,970	18,850	20,740	940	12,250		
8 5⁄8	40.00	0.450	28,670	31,850	35,040	1,590	20,700		
	44.00	0.500	30,190	33,540	36,890	1,680	21,800		
	49.00	0.557	30,190	33,540	36,890	1,680	21,800		
ļ	36.00	0.352	14,510	16,120	17,730	810	10,480		
	40.00	0.395	26,470	29,410	32,340	1,470	19,110		
	43.50	0.435	28,390	31,550	34,710	1,580	20,510		
9 5⁄8	47.00	0.472	30,190	33,540	36,890	1,680	21,800		
[53.50	0.545	30,190	33,540	36,890	1,680	21,800		
[58.40	0.595	30,420	33,800	37,180	1,690	21,970		
[59.40	0.609	34,280	38,090	41,900	1,900	24,760		

				55 ksi l	Grade Torqu	e (ft-lb)	
Size	Weight	Pipe Body		Final Torque		Shoulde	r Torque
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum
2 3⁄8	4.60	0.190	1,190	1,320	1,450	200	1,060
	5.80	0.254	1,620	1,800	1,980	270	1,440
2 /0	6.60	0.295	1,940	2,160	2,380	320	1,730
	7.35	0.336	2,270	2,520	2,770	380	2,020
2 7⁄8	6.40	0.217	1,940	2,160	2,380	320	1,730
	7.80	0.276	2,380	2,640	2,900	400	2,110
	8.60	0.308	3,020	3,360	3,700	500	2,690
2 78	9.35	0.340	3,350	3,720	4,090	560	2,980
	10.50	0.392	3,890	4,320	4,750	650	3,460
	11.50	0.440	4,100	4,560	5,020	680	3,650
	7.70	0.216	2,930	3,250	3,580	490	2,600
	9.20	0.254	3,390	3,770	4,150	570	3,020
	10.20	0.289	3,980	4,420	4,860	660	3,540
3 1⁄2	12.70	0.375	5,500	6,110	6,720	920	4,890
	14.30	0.430	6,200	6,890	7,580	1,030	5,510
	15.50	0.476	6,900	7,670	8,440	1,150	6,140
	17.00	0.530	7,370	8,190	9,010	1,230	6,550
	9.50	0.226	3,510	3,900	4,290	590	3,120
	10.70	0.262	4,210	4,680	5,150	700	3,740
	11.60	0.286	-	-	-	-	-
4	13.20	0.330	5,500	6,110	6,720	920	4,890
	14.80	0.380	-	-	-	-	-
	16.10	0.415	7,020	7,800	8,580	1,170	6,240
	11.60	0.250	3,960	4,400	4,840	440	3,520
	12.60	0.271	4,360	4,840	5,320	480	3,870
	13.50	0.290	4,750	5,280	5,810	530	4,220
4.17	15.20	0.337	5,740	6,380	7,020	640	5,100
4 1⁄2	17.00	0.380	6,530	7,260	7,990	730	5,810
	18.90	0.430	7,330	8,140	8,950	810	6,510
	21.50	0.500	8,510	9,460	10,410	950	7,570
	23.70	0.560	9,500	10,560	11,620	1,060	8,450
	13.00	0.253	4,060	4,510	4,960	450	3,380
	15.00	0.296	5,450	6,050	6,660	610	4,540
_	18.00	0.362	7,130	7,920	8,710	790	5,940
5	21.40	0.437	8,910	9,900	10,890	990	7,430
	23.20	0.478	9,600	10,670	11,740	1,070	8,000
	24.10	0.500	10,100	11,220	12,340	1,120	8,420

			80, 85 ksi Grade Torque (ft-lb)						
Size	Weinbt	Pipe Rody		Final Torque			Shoulder Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
2 3⁄8	4.60	0.190	1,440	1,560	1,680	230	1,250		
	5.80	0.254	1,940	2,100	2,260	320	1,680		
2 %	6.60	0.295	2,170	2,350	2,530	350	1,880		
	7.35	0.336	2,540	2,750	2,960	410	2,200		
2.7%	6.40	0.217	2,270	2,450	2,630	370	1,960		
	7.80	0.276	2,820	3,050	3,280	460	2,440		
	8.60	0.308	3,160	3,410	3,660	510	2,730		
2 1/8	9.35	0.340	3,600	3,890	4,190	580	3,120		
	10.50	0.392	4,080	4,410	4,740	660	3,530		
	11.50	0.440	4,440	4,800	5,160	720	3,840		
	7.70	0.216	3,340	3,710	4,080	560	2,960		
	9.20	0.254	4,550	5,030	5,510	750	4,020		
	10.20	0.289	5,250	5,840	6,420	880	4,670		
3 1/2	12.70	0.375	6,120	6,800	7,490	1,020	5,440		
	14.30	0.430	7,110	7,900	8,700	1,190	6,320		
	15.50	0.476	8,310	9,230	10,150	1,380	7,380		
	17.00	0.530	8,890	9,880	10,870	1,480	7,900		
	9.50	0.226	4,500	4,870	5,230	730	3,890		
	10.70	0.262	5,150	5,720	6,310	860	4,580		
.	11.60	0.286	5,710	6,340	6,980	950	5,080		
4	13.20	0.330	6,500	7,220	7,940	1,080	5,770		
	14.80	0.380	7,610	8,450	9,300	1,270	6,760		
	16.10	0.415	8,520	9,450	10,400	1,420	7,560		
	11.60	0.250	4,850	5,390	5,930	540	4,310		
Ì	12.60	0.271	5,350	5,940	6,530	590	4,750		
	13.50	0.290	5,940	6,600	7,260	660	5,280		
	15.20	0.337	7,230	8,030	8,830	800	6,420		
4 1/2	17.00	0.380	8,220	9,130	10,040	910	7,300		
	18.90	0.430	9,500	10,560	11,620	1,060	8,450		
	21.50	0.500	11,090	12,320	13,550	1,230	9,860		
	23.70	0.560	12,380	13,750	15,130	1,380	11,000		
	13.00	0.253	5,450	6,050	6,660	610	4,540		
	15.00	0.296	6,730	7,480	8,230	750	5,610		
	18.00	0.362	8,620	9,580	10,540	960	7,190		
5	21.40	0.437	10,780	11,990	13,200	1,200	8,990		
	23.20	0.478	12,570	13,970	15,370	1,400	10,480		
	24.10	0.500	13,170	14,630	16,090	1,460	10,970		

			90, 95 ksi Grade Torque (ft-lb)						
Size	Weight	Pipe Body		Final Torque		Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
2 3/8	4.60	0.190	1,660	1,790	1,920	270	1,430		
	5.80	0.254	2,160	2,330	2,510	350	1,870		
2 /0	6.60	0.295	2,380	2,560	2,740	380	2,040		
	7.35	0.336	2,810	3,040	3,260	460	2,430		
2 7/8	6.40	0.217	2,380	2,570	2,760	390	2,050		
	7.80	0.276	2,990	3,230	3,470	480	2,580		
	8.60	0.308	3,530	3,800	4,080	570	3,040		
2 78	9.35	0.340	4,080	4,410	4,740	660	3,530		
	10.50	0.392	4,750	5,140	5,520	770	4,110		
	11.50	0.440	5,040	5,450	5,860	820	4,360		
	7.70	0.216	4,100	4,550	5,010	680	3,640		
	9.20	0.254	4,730	5,250	5,790	790	4,200		
	10.20	0.289	6,100	6,770	7,450	1,020	5,420		
3 ½	12.70	0.375	7,440	8,270	9,100	1,240	6,610		
	14.30	0.430	8,890	9,880	10,870	1,480	7,900		
	15.50	0.476	9,010	10,010	11,010	1,500	8,010		
	17.00	0.530	9,480	10,530	11,580	1,580	8,420		
	9.50	0.226	5,190	5,760	6,330	860	4,610		
	10.70	0.262	6,400	7,110	7,830	1,070	5,690		
4	11.60	0.286	6,980	7,760	8,540	1,160	6,210		
4	13.20	0.330	7,900	8,790	9,660	1,320	7,030		
	14.80	0.380	8,780	9,750	10,730	1,460	7,800		
	16.10	0.415	10,150	10,970	11,800	1,650	8,780		
	11.60	0.250	5,250	5,830	6,410	580	4,660		
	12.60	0.271	5,840	6,490	7,140	650	5,190		
	13.50	0.290	6,510	7,240	7,960	720	5,790		
4.17	15.20	0.337	7,820	8,690	9,560	870	6,950		
4 1/2	17.00	0.380	8,950	9,960	10,990	1,000	7,960		
	18.90	0.430	10,100	11,220	12,340	1,120	8,980		
	21.50	0.500	11,880	13,200	14,520	1,320	10,560		
	23.70	0.560	12,970	14,410	15,850	1,440	11,530		
	13.00	0.253	5,840	6,490	7,140	650	4,870		
	15.00	0.296	7,030	7,810	8,590	780	5,860		
_	18.00	0.362	8,990	9,990	10,990	1,000	7,490		
5	21.40	0.437	11,440	12,720	13,990	1,270	9,540		
	23.20	0.478	13,170	14,630	16,090	1,460	10,970		
	24.10	0.500	13,760	15,290	16,820	1,530	11,470		

			105, 110 ksi Grade Torque (ft-lb)						
Size	Weinht	Pine Body		Final Torque		Shoulder Torque			
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	4.60	0.190	1,680	1,810	1,940	270	1,450		
0.3/	5.80	0.254	2,170	2,350	2,530	350	1,880		
2 %	6.60	0.295	2,580	2,790	3,000	420	2,230		
	7.35	0.336	2,940	3,180	3,420	480	2,540		
9.7%	6.40	0.217	2,510	2,780	3,060	420	2,230		
	7.80	0.276	3,160	3,500	3,850	530	2,800		
	8.60	0.308	3,780	4,090	4,390	610	3,270		
2 1/8	9.35	0.340	4,440	4,800	5,160	720	3,840		
	10.50	0.392	5,040	5,450	5,860	820	4,360		
	11.50	0.440	5,400	5,840	6,280	880	4,670		
İ	7.70	0.216	4,270	4,750	5,220	710	3,800		
ĺ	9.20	0.254	4,910	5,460	6,010	820	4,370		
Ì	10.20	0.289	6,160	6,850	7,540	1,030	5,480		
3 1/2	12.70	0.375	8,070	8,970	9,870	1,350	7,180		
ľ	14.30	0.430	9,010	10,010	11,010	1,500	8,010		
	15.50	0.476	9,750	10,830	11,910	1,620	8,660		
	17.00	0.530	10,400	11,560	12,710	1,730	9,250		
	9.50	0.226	5,730	6,370	7,010	960	5,100		
	10.70	0.262	6,620	7,360	8,100	1,100	5,890		
	11.60	0.286	7,120	7,920	8,710	1,190	6,330		
4	13.20	0.330	8,000	8,880	9,760	1,330	7,100		
	14.80	0.380	9,360	10,400	11,440	1,560	8,320		
Ì	16.10	0.415	10,470	11,640	12,790	1,750	9,310		
	11.60	0.250	5,740	6,380	7,020	640	5,100		
Ì	12.60	0.271	6,440	7,150	7,870	720	5,720		
Ì	13.50	0.290	7,030	7,810	8,590	780	6,250		
İ	15.20	0.337	8,810	9,790	10,770	980	7,830		
4 1/2	17.00	0.380	10,200	11,330	12,460	1,130	9,060		
ľ	18.90	0.430	11,290	12,540	13,790	1,250	10,030		
ľ	21.50	0.500	13,270	14,740	16,210	1,470	11,790		
İ	23.70	0.560	14,650	16,280	17,910	1,630	13,020		
	13.00	0.253	6,530	7,260	7,990	730	5,450		
Ì	15.00	0.296	8,120	9,020	9,920	900	6,770		
	18.00	0.362	11,090	12,320	13,550	1,230	9,240		
5	21.40	0.437	14,060	15,620	17,180	1,560	11,720		
	23.20	0.478	14,850	16,500	18,150	1,650	12,380		
	24.10	0.500	15,940	17,710	19,480	1,770	13,280		

			125 ksi Grade Torque (ft-lb)						
Size	Weight	Pipe Body		Final Torque		Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
2 3⁄8	4.60	0.190	1,840	1,990	2,140	300	1,590		
	5.80	0.254	2,400	2,600	2,800	390	2,080		
2 78	6.60	0.295	2,810	3,040	3,270	460	2,430		
	7.35	0.336	3,300	3,560	3,830	530	2,850		
2 7/8	6.40	0.217	2,810	3,040	3,260	460	2,430		
	7.80	0.276	3,360	3,640	3,910	550	2,910		
	8.60	0.308	4,120	4,450	4,790	670	3,560		
2 78	9.35	0.340	4,740	5,120	5,510	770	4,100		
	10.50	0.392	5,270	5,700	6,130	860	4,560		
	11.50	0.440	5,640	6,100	6,550	910	4,880		
	7.70	0.216	4,500	5,010	5,510	750	4,000		
	9.20	0.254	5,100	5,670	6,230	850	4,530		
	10.20	0.289	6,590	7,320	8,050	1,100	5,860		
3 ½	12.70	0.375	8,450	9,390	10,320	1,410	7,510		
	14.30	0.430	9,360	10,400	11,440	1,560	8,320		
	15.50	0.476	10,400	11,560	12,710	1,730	9,250		
	17.00	0.530	11,050	12,280	13,510	1,840	9,820		
	9.50	0.226	6,270	6,970	7,670	1,050	5,570		
	10.70	0.262	7,140	7,930	8,720	1,190	6,340		
	11.60	0.286	7,590	8,440	9,280	1,270	6,750		
4	13.20	0.330	8,540	9,490	10,440	1,420	7,590		
	14.80	0.380	-	-	-	-	-		
	16.10	0.415	11,170	12,410	13,650	1,860	9,930		
	11.60	0.250	6,140	6,820	7,500	680	5,460		
	12.60	0.271	6,930	7,700	8,470	770	6,160		
	13.50	0.290	7,620	8,470	9,320	850	6,780		
114	15.20	0.337	9,650	10,730	11,800	1,070	8,580		
4 72	17.00	0.380	11,240	12,490	13,730	1,250	9,990		
	18.90	0.430	12,380	13,750	15,130	1,380	11,000		
	21.50	0.500	14,060	15,620	17,180	1,560	12,500		
	23.70	0.560	15,820	17,580	19,340	1,760	14,060		
	13.00	0.253	7,130	7,920	8,710	790	5,940		
	15.00	0.296	8,910	9,900	10,890	990	7,430		
_	18.00	0.362	11,780	13,090	14,400	1,310	9,820		
5	21.40	0.437	15,440	17,160	18,880	1,720	12,870		
	23.20	0.478	16,040	17,820	19,600	1,780	13,370		
	24.10	0.500	17,330	19,250	21,180	1,930	14,440		

				140 ksi	Grade Torq	ue (ft-lb)	140 ksi Grade Torque (ft-lb)						
Size	Weinht	Pine Body		Final Torque	1	Shoulde	r Torque						
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum						
2 3/8	4.60	0.190	1,940	2,160	2,380	320	1,730						
	5.80	0.254	2,700	3,000	3,300	450	2,400						
	6.60	0.295	3,020	3,360	3,700	500	2,690						
	7.35	0.336	3,780	4,200	4,620	630	3,360						
0.7/	6.40	0.217	3,020	3,360	3,700	500	2,690						
	7.80	0.276	4,320	4,800	5,280	720	3,840						
	8.60	0.308	4,860	5,400	5,940	810	4,320						
2 1/8	9.35	0.340	5,940	6,600	7,260	990	5,280						
	10.50	0.392	6,480	7,200	7,920	1,080	5,760						
	11.50	0.440	7,340	8,160	8,980	1,220	6,530						
	7.70	0.216	4,500	5,010	5,510	750	4,000						
	9.20	0.254	5,620	6,240	6,860	940	4,990						
ĺ	10.20	0.289	8,190	9,100	10,010	1,370	7,280						
3 1/2	12.70	0.375	9,590	10,660	11,730	1,600	8,530						
	14.30	0.430	10,650	11,830	13,010	1,770	9,460						
	15.50	0.476	11,470	12,740	14,010	1,910	10,190						
	17.00	0.530	12,520	13,910	15,300	2,090	11,130						
	9.50	0.226	6,550	7,280	8,010	1,090	5,820						
	10.70	0.262	7,840	8,710	9,580	1,310	6,970						
.	11.60	0.286	-	-	-	-	-						
4	13.20	0.330	9,010	10,010	11,010	1,500	8,010						
	14.80	0.380	-	-	-	-	-						
	16.10	0.415	12,520	13,910	15,300	2,090	11,130						
	11.60	0.250	6,630	7,370	8,110	740	5,900						
ĺ	12.60	0.271	7,620	8,470	9,320	850	6,780						
	13.50	0.290	8,510	9,460	10,410	950	7,570						
	15.20	0.337	10,790	11,990	13,190	1,200	9,590						
4 1/2	17.00	0.380	12,570	13,970	15,370	1,400	11,180						
	18.90	0.430	14,060	15,620	17,180	1,560	12,500						
	21.50	0.500	16,040	17,820	19,600	1,780	14,260						
	23.70	0.560	17,920	19,910	21,900	1,990	15,930						
	13.00	0.253	7,720	8,580	9,440	860	6,440						
ĺ	15.00	0.296	9,700	10,780	11,860	1,080	8,090						
_ İ	18.00	0.362	13,270	14,740	16,210	1,470	11,060						
5	21.40	0.437	17,620	19,580	21,540	1,960	14,690						
	23.20	0.478	19,500	21,670	23,840	2,170	16,250						
	24.10	0.500	20,390	22,660	24,930	2,270	17,000						

			55 ksi Grade Torque (ft-lb)						
Size	Weight	Pipe Body	Final Torque Shoulder Tor						
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	15.50	0.275	5,970	6,630	7,290	660	4,970		
5 1⁄2	17.00	0.304	6,790	7,540	8,290	750	5,660		
	20.00	0.361	8,660	9,620	10,580	960	7,220		
J 72	23.00	0.415	10,180	11,310	12,440	1,130	8,480		
6	26.00	0.476	11,470	12,740	14,010	1,270	9,560		
	26.80	0.500	12,050	13,390	14,730	1,340	10,040		
6	24.10	0.400	-	-	-	-	-		
	20.00	0.288	6,790	7,540	8,290	530	4,900		
6.5%	24.00	0.352	8,890	9,880	10,870	690	6,420		
0 79	28.00	0.417	11,820	13,130	14,440	920	8,530		
	32.00	0.475	14,390	15,990	17,590	1,120	10,390		
	23.00	0.317	8,070	8,970	9,870	630	5,830		
	26.00	0.362	9,710	10,790	11,870	760	7,010		
	29.00	0.408	11,930	13,260	14,590	930	8,620		
7	32.00	0.453	13,920	15,470	17,020	1,080	10,060		
'	35.00	0.498	15,440	17,160	18,880	1,200	11,150		
	38.00	0.540	16,260	18,070	19,880	1,260	11,750		
	42.70	0.625	17,080	18,980	20,880	1,330	12,340		
	46.40	0.687	18,490	20,540	22,590	1,440	13,350		
	29.70	0.375	10,060	11,180	12,300	780	7,270		
	33.70	0.430	10,880	12,090	13,300	850	7,860		
7.54	39.00	0.500	14,630	16,250	17,880	1,140	10,560		
1 78	42.80	0.562	17,080	18,980	20,880	1,330	12,340		
	45.30	0.595	18,140	20,150	22,170	1,410	13,100		
	47.10	0.625	-	-	-	-	-		
7 3⁄4	46.10	0.595	-	-	-	-	-		
	32.00	0.352	7,840	8,710	9,580	440	5,660		
	36.00	0.400	9,590	10,660	11,730	530	6,930		
8 5⁄8	40.00	0.450	10,650	11,830	13,010	590	7,690		
	44.00	0.500	12,290	13,650	15,020	680	8,870		
	49.00	0.557	15,680	17,420	19,160	870	11,320		
	36.00	0.352	8,540	9,490	10,440	470	6,170		
9 5⁄8	40.00	0.395	9,480	10,530	11,580	530	6,840		
	43.50	0.435	10,300	11,440	12,580	570	7,440		
	47.00	0.472	12,520	13,910	15,300	700	9,040		
	53.50	0.545	14,160	15,730	17,300	790	10,220		
	58.40	0.595	15,910	17,680	19,450	880	11,490		
	59.40	0.609	17,670	19,630	21,590	980	12,760		

				80, 85 ks	i Grade Tor	que (ft-lb)	
Size	Weinht	Pine Rody		Final Torque		Shoulde	r Torque
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum
	15.50	0.275	7,490	8,320	9,150	830	6,240
[17.00	0.304	8,660	9,620	10,580	960	7,220
5 1⁄2	20.00	0.361	11,230	12,480	13,730	1,250	9,360
	23.00	0.415	13,220	14,690	16,160	1,470	11,020
	26.00	0.476	15,090	16,770	18,450	1,680	12,580
[26.80	0.500	15,910	17,680	19,450	1,770	13,260
6	24.10	0.400	15,470	17,190	18,900	1,720	12,890
	20.00	0.288	8,540	9,490	10,440	660	6,170
6.5/	24.00	0.352	14,560	16,170	17,800	1,130	10,510
6 %	28.00	0.417	18,540	20,590	22,660	1,440	13,380
ſ	32.00	0.475	19,420	21,580	23,740	1,510	14,030
	23.00	0.317	13,460	14,950	16,450	1,050	9,720
[26.00	0.362	15,340	17,040	18,750	1,190	11,080
Ī	29.00	0.408	20,940	22,520	24,090	1,580	14,640
_	32.00	0.453	29,170	31,540	33,900	2,210	20,500
1	35.00	0.498	29,170	32,410	35,660	2,270	21,070
Ī	38.00	0.540	29,250	32,500	35,750	2,280	21,130
	42.70	0.625	32,760	36,400	40,040	2,550	23,660
	46.40	0.687	33,930	37,700	41,470	2,640	24,510
	29.70	0.375	12,870	14,300	15,730	1,000	9,300
[33.70	0.430	14,160	15,730	17,300	1,100	10,220
7.5/	39.00	0.500	19,420	21,580	23,740	1,510	14,030
1 3/8	42.80	0.562	22,820	25,350	27,890	1,770	16,480
Ī	45.30	0.595	24,220	26,910	29,600	1,880	17,490
Ī	47.10	0.625	-	-	-	-	-
7 3⁄4	46.10	0.595	-	-	-	-	-
	32.00	0.352	9,950	11,050	12,160	550	7,180
[36.00	0.400	12,400	13,780	15,160	690	8,960
8 5⁄8	40.00	0.450	23,400	26,000	28,600	1,300	16,900
[44.00	0.500	29,480	32,760	36,040	1,640	21,290
	49.00	0.557	30,190	33,540	36,890	1,680	21,800
	36.00	0.352	10,650	11,830	13,010	590	7,690
[40.00	0.395	26,470	29,410	32,340	1,470	19,110
Ī	43.50	0.435	30,190	33,540	36,890	1,680	21,800
9 5⁄8	47.00	0.472	30,190	33,540	36,890	1,680	21,800
	53.50	0.545	30,190	33,540	36,890	1,680	21,800
[58.40	0.595	30,190	33,540	36,890	1,680	21,800
ĺ	59.40	0.609	30,190	33,540	36,890	1,680	21,800

				90, 95 ka	i Grade Tor	que (ft-lb)		
Size	Weight	Pipe Body	Final Torque Shoulder Torqu					
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum	
	15.50	0.275	8,070	8,970	9,870	900	6,730	
5 1⁄2	17.00	0.304	9,360	10,400	11,440	1,040	7,800	
	20.00	0.361	12,290	13,650	15,020	1,370	10,240	
J 72	23.00	0.415	14,510	16,120	17,730	1,610	12,090	
6	26.00	0.476	16,500	18,330	20,160	1,830	13,750	
	26.80	0.500	17,430	19,370	21,310	1,940	14,530	
6	24.10	0.400	17,380	19,310	21,240	1,930	14,480	
	20.00	0.288	9,240	10,270	11,300	720	6,680	
6.54	24.00	0.352	16,900	18,770	20,640	1,310	12,200	
0 %9	28.00	0.417	21,330	23,700	26,070	1,660	15,400	
	32.00	0.475	21,330	23,700	26,070	1,660	15,400	
	23.00	0.317	16,210	17,520	18,840	1,230	11,390	
	26.00	0.362	17,560	18,980	20,410	1,330	12,340	
	29.00	0.408	25,640	27,720	29,800	1,940	18,020	
7	32.00	0.453	33,800	36,530	39,260	2,560	23,740	
(35.00	0.498	34,590	37,400	40,210	2,620	24,310	
	38.00	0.540	35,370	38,250	41,120	2,680	24,860	
	42.70	0.625	35,370	38,250	41,120	2,680	24,860	
	46.40	0.687	35,370	38,250	41,120	2,680	24,860	
	29.70	0.375	14,040	15,600	17,160	1,090	10,140	
	33.70	0.430	23,170	25,740	28,310	1,800	16,730	
7.54	39.00	0.500	21,290	23,660	26,030	1,660	15,380	
1 %8	42.80	0.562	24,570	27,300	30,030	1,910	17,750	
	45.30	0.595	25,740	28,600	31,460	2,000	18,590	
	47.10	0.625	30,190	33,540	36,890	2,348	21,800	
7 3⁄4	46.10	0.595	44,230	49,140	54,050	2,460	31,940	
	32.00	0.352	10,530	11,700	12,870	590	7,610	
	36.00	0.400	12,990	14,430	15,870	720	9,380	
8 5⁄8	40.00	0.450	25,160	27,950	30,750	1,400	18,170	
	44.00	0.500	30,190	33,540	36,890	1,680	21,800	
	49.00	0.557	30,190	33,540	36,890	1,680	21,800	
	36.00	0.352	11,700	13,000	14,300	650	8,450	
9 5%	40.00	0.395	26,470	29,410	32,340	1,470	19,110	
	43.50	0.435	30,190	33,540	36,890	1,680	21,800	
	47.00	0.472	30,190	33,540	36,890	1,680	21,800	
	53.50	0.545	30,190	33,540	36,890	1,680	21,800	
	58.40	0.595	30,190	33,540	36,890	1,680	21,800	
	59.40	0.609	30,190	33,540	36,890	1,680	21,800	

			105, 110 ksi Grade Torque (ft-lb)						
Size	Weinht	Pipe Body		Final Torque	1	Shoulde	Shoulder Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	15.50	0.275	9,010	10,010	11,010	1,000	7,510		
[17.00	0.304	10,410	11,570	12,730	1,160	8,680		
5 1⁄2	20.00	0.361	13,690	15,210	16,730	1,520	11,410		
	23.00	0.415	19,510	21,680	23,860	2,170	16,260		
	26.00	0.476	19,510	21,680	23,860	2,170	16,260		
	26.80	0.500	19,510	21,680	23,860	2,170	16,260		
6	24.10	0.400	20,120	22,360	24,600	2,240	16,770		
	20.00	0.288	9,830	10,920	12,010	760	7,100		
0.5/	24.00	0.352	16,900	18,770	20,640	1,310	12,200		
0 %9	28.00	0.417	21,330	23,700	26,070	1,660	15,400		
	32.00	0.475	22,100	24,560	27,010	1,720	15,960		
	23.00	0.317	16,210	17,520	18,840	1,230	11,390		
[26.00	0.362	17,560	18,980	20,410	1,330	12,340		
ĺ	29.00	0.408	25,640	27,720	29,800	1,940	18,020		
_	32.00	0.453	33,800	36,530	39,260	2,560	23,740		
1	35.00	0.498	34,590	37,400	40,210	2,620	24,310		
Ī	38.00	0.540	35,370	38,250	41,120	2,680	24,860		
	42.70	0.625	35,370	38,250	41,120	2,680	24,860		
	46.40	0.687	35,370	38,250	41,120	2,680	24,860		
	29.70	0.375	14,980	16,640	18,300	1,160	10,820		
[33.70	0.430	16,610	18,460	20,310	1,290	12,000		
3.5/	39.00	0.500	23,050	25,610	28,170	1,790	16,650		
/ %	42.80	0.562	27,140	30,160	33,180	2,110	19,600		
Ī	45.30	0.595	28,900	32,110	35,320	2,250	20,870		
Ī	47.10	0.625	-	-	-	-	-		
7 3⁄4	46.10	0.595	45,510	50,570	55,630	2,530	32,870		
	32.00	0.352	11,000	12,220	13,440	610	7,940		
[36.00	0.400	14,270	15,860	17,450	790	10,310		
8 5⁄8	40.00	0.450	26,910	29,900	32,890	1,500	19,440		
[44.00	0.500	30,190	33,540	36,890	1,680	21,800		
	49.00	0.557	30,190	33,540	36,890	1,680	21,800		
	36.00	0.352	12,400	13,780	15,160	690	8,960		
Ì	40.00	0.395	26,470	29,410	32,340	1,470	19,110		
Ì	43.50	0.435	30,190	33,540	36,890	1,680	21,800		
9 5⁄8	47.00	0.472	30,190	33,540	36,890	1,680	21,800		
ľ	53.50	0.545	30,190	33,540	36,890	1,680	21,800		
ľ	58.40	0.595	30,190	33,540	36,890	1,680	21,800		
Ì	59.40	0.609	30,190	33,540	36,890	1,680	21,800		

			125 ksi Grade Torque (ft-lb)						
Size	Weiaht	Pipe Body		Final Torque		Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	15.50	0.275	9,240	10,270	11,300	1,030	7,700		
5 ½	17.00	0.304	11,120	12,350	13,590	1,240	9,260		
	20.00	0.361	14,270	15,860	17,450	1,590	11,900		
J 1/2	23.00	0.415	19,510	21,680	23,860	2,170	16,260		
6	26.00	0.476	19,510	21,680	23,860	2,170	16,260		
	26.80	0.500	19,510	21,680	23,860	2,170	16,260		
6	24.10	0.400	21,670	24,080	26,480	2,410	18,060		
	20.00	0.288	10,650	11,830	13,010	830	7,690		
6.5%	24.00	0.352	16,900	18,770	20,640	1,310	12,200		
b %9	28.00	0.417	21,330	23,700	26,070	1,660	15,400		
	32.00	0.475	22,100	24,560	27,010	1,720	15,960		
	23.00	0.317	16,210	17,520	18,840	1,230	11,390		
	26.00	0.362	17,560	18,980	20,410	1,330	12,340		
	29.00	0.408	25,640	27,720	29,800	1,940	18,020		
7	32.00	0.453	33,800	36,530	39,260	2,560	23,740		
1	35.00	0.498	34,590	37,400	40,210	2,620	24,310		
	38.00	0.540	35,370	38,250	41,120	2,680	24,860		
	42.70	0.625	35,370	38,250	41,120	2,680	24,860		
	46.40	0.687	35,370	38,250	41,120	2,680	24,860		
	29.70	0.375	15,800	17,550	19,310	1,230	11,410		
	33.70	0.430	17,200	19,110	21,020	1,340	12,420		
7.5/	39.00	0.500	23,990	26,650	29,320	1,870	17,320		
1 %8	42.80	0.562	29,250	32,500	35,750	2,280	21,130		
	45.30	0.595	31,240	34,710	38,180	2,430	22,560		
	47.10	0.625	-	-	-	-	-		
7 3⁄4	46.10	0.595	-	-	-	-	-		
	32.00	0.352	12,170	13,520	14,870	680	8,790		
	36.00	0.400	14,980	16,640	18,300	830	10,820		
8 5⁄8	40.00	0.450	28,670	31,850	35,040	1,590	20,700		
	44.00	0.500	30,190	33,540	36,890	1,680	21,800		
	49.00	0.557	30,190	33,540	36,890	1,680	21,800		
	36.00	0.352	13,220	14,690	16,160	730	9,550		
9 5⁄8	40.00	0.395	26,470	29,410	32,340	1,470	19,110		
	43.50	0.435	30,190	33,540	36,890	1,680	21,800		
	47.00	0.472	30,190	33,540	36,890	1,680	21,800		
	53.50	0.545	30,190	33,540	36,890	1,680	21,800		
	58.40	0.595	30,190	33,540	36,890	1,680	21,800		
	59.40	0.609	30,420	33,800	37,180	1,690	21,970		

			140 ksi Grade Torque (ft-lb)						
Size	Weinht	Pine Rody	ipe Body Final Torque Il (inch) Minimum Optimum Maximum N	Shoulde	r Torque				
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	15.50	0.275	10,530	11,700	12,870	1,170	8,780		
	17.00	0.304	12,870	14,300	15,730	1,430	10,730		
F 1/	20.00	0.361	17,550	19,500	21,450	1,950	14,630		
5 1/2	23.00	0.415	21,060	23,400	25,740	2,340	17,550		
	26.00	0.476	22,230	24,700	27,170	2,470	18,530		
	26.80	0.500	23,400	26,000	28,600	2,600	19,500		
6	24.10	0.400	-	-	-	-	-		
	20.00	0.288	11,820	13,130	14,440	920	8,530		
6.5/	24.00	0.352	16,900	18,770	20,640	1,310	12,200		
0 %9	28.00	0.417	22,580	25,090	27,600	1,760	16,310		
	32.00	0.475	28,550	31,720	34,890	2,220	20,620		
	23.00	0.317	16,210	17,520	18,840	1,230	11,390		
	26.00	0.362	18,370	20,410	27,890	1,430	13,270		
	29.00	0.408	25,640	27,720	29,800	1,940	18,020		
-	32.00	0.453	33,800	36,530	39,260	2,560	23,740		
1	35.00	0.498	34,590	37,400	40,210	2,620	24,310		
	38.00	0.540	35,370	38,250	41,120	2,680	24,860		
	42.70	0.625	35,370	38,250	41,120	2,680	24,860		
	46.40	0.687	35,370	38,250	41,120	2,680	24,860		
	29.70	0.375	17,780	19,760	21,740	1,380	12,840		
	33.70	0.430	19,770	21,970	24,170	1,540	14,280		
7.54	39.00	0.500	27,850	30,940	34,030	2,170	20,110		
1 78	42.80	0.562	32,990	36,660	40,330	2,570	23,830		
	45.30	0.595	35,100	39,000	42,900	2,730	25,350		
	47.10	0.625	-	-	-	-	-		
7 3⁄4	46.10	0.595	-	-	-	-			
	32.00	0.352	13,570	15,080	16,590	750	9,800		
	36.00	0.400	16,970	18,850	20,740	940	12,250		
8 5⁄8	40.00	0.450	28,670	31,850	35,040	1,590	20,700		
	44.00	0.500	30,190	33,540	36,890	1,680	21,800		
	49.00	0.557	30,190	33,540	36,890	1,680	21,800		
	36.00	0.352	14,510	16,120	17,730	810	10,480		
[40.00	0.395	26,470	29,410	32,340	1,470	19,110		
	43.50	0.435	30,190	33,540	36,890	1,680	21,800		
9 5⁄8	47.00	0.472	30,190	33,540	36,890	1,680	21,800		
	53.50	0.545	30,190	33,540	36,890	1,680	21,800		
[58.40	0.595	30,420	33,800	37,180	1,690	21,970		
	59.40	0.609	34,280	38,090	41,900	1,900	24,760		

			55 ksi Grade Torque (ft-lb)						
Size	Weight	Pipe Body Final To		Final Torque Shoulde		r Torque			
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	20.00	0.288			N/A				
0.5/	24.00	0.352			N/A				
0 %9	28.00	0.417			N/A				
	32.00	0.475			N/A				

				80, 85 ksi Grade Torque (ft-lb)					
Size	Weinht	Pine Body		Final Torque Shoulder Torque		r Torque			
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	20.00	0.288			N/A				
0.5/	24.00	0.352	14,040	15,600	17,160	871	10,140		
6 %	28.00	0.417			N/A				
	32.00	0.475			N/A				

				90, 95 ka	si Grade Tor	que (ft-lb)	
Size	Weight	Pine Rody	9	Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum
	20.00	0.288	N/A				
0.5/	24.00	0.352	16,250	18,050	19,850	1,011	11,733
0 %9	28.00	0.417			N/A		
	32.00	0.475			N/A		

				110 ksi	Grade Torq	ue (ft-lb)	
Size	Weinht	Pine Body		Final Torque	9	Shoulde	r Torque
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum
7	29.00	0.408	40.000	40.000	50 500	0.550	00.750
7	32.00	0.453	46,000	48,000	52,500	2,550	23,750

It is recommended to check the following website for up to date torque information: www.jfetc.com

JFEBEAR High Torque DRHA (HT-DRHA)

				55 ksi Grade Torque (ft-lb)					
Size	Weight	Pipe Body		Final Torque	Shoulde	r Torque			
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Minimum	Maximum			
4.1/	12.60	0.271			N/A				
4 1/2	13.50	0.290			N/A				

ĺ					80, 85 ks	que (ft-lb)		
	Size	Weinht	Pine Body		Final Torque	1	Shoulde	r Torque
	(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum
	4.1/	12.60	0.271			N/A		
	4 1/2	13.50	0.290	5,400	6,000	6,600	600	4,800

				90, 95 ks	i Grade Tor	que (ft-lb)		
Size	Weinht	Pine Body		Final Torque			r Torque	
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum	
4.1/	12.60	0.271	N/A					
4 1/2	13.50	0.290	5,920	6,580	7,240	658	5,264	

JFEBEAR 📩 High Torque DRHA CLEAR-RUN

				55 ksi Grade Torque (ft-lb)				
Size	Weight	Pine Body		Final Torque Should				
(inch)	(lb/ft)	Wall (inch)	Minimum	Minimum Optimum Maximum Minimu				
4.1/	12.60	0.271	N/A					
4 1/2	13.50	0.290	90 N/A					

				80, 85 ks	i Grade Tor	que (ft-lb)	
Size	Weight	Pipe Body		Final Torque	1	Shoulde	r Torque
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum
4.1/	12.60	0.271	8,000	9,000	10,000	670	5,400
4 1/2	13.50	0.290	6,750	7,500	8,250	750	6,000

				90, 95 ks	que (ft-lb)		
Size	Weinht	Pine Rody		Final Torque	1	Shoulde	r Torque
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum
4.1/	12.60	0.271			N/A		
4 1/2	13.50	0.290	7,400	8,230	9,050	820	6,580

17 JFETIGER Make-up Torques

JFETIGER 🧞 JFETIGER API

		Pipe		80, 85 ks	i Grade Tor	que (ft-lb)	
Sizo		Body	I	Final Torque	9	Shoulde	r Torque
(inch)	Weight (lb/ft)	(inch)	Min	Opt	Max	Min	Max
	23.00	0.317	8,500	9,440	10,390	944	6,608
	26.00	0.362	9,880	10,980	12,080	1,098	7,686
_	29.00	0.408	13,210	14,680	16,150	1,468	11,744
	32.00	0.453	12,170	13,520	14,870	1,352	9,464
	35.00	0.498	13,410	14,900	16,390	1,490	10,430
	38.00	0.540	14,460	16,070	17,670	1,607	11,249
	29.70	0.375	13,010	14,460	15,900	1,446	10,122
	33.70	0.430	15,240	16,930	18,630	1,693	11,851
7.5/	39.00	0.500	17,000	18,890	20,780	1,889	13,223
1 %	42.80	0.562	18,520	20,580	22,640	2,058	14,406
	45.30	0.595	19,430	21,590	23,750	2,159	15,113
	47.10	0.625	19,870	22,080	24,290	2,208	15,456
	40.00	0.395	15,200	16,890	18,580	1,689	11,823
	43.50	0.435	16,990	18,880	20,770	1,888	13,216
0.5/	47.00	0.472	18,780	20,870	22,950	2,087	14,609
9 %	53.50	0.545	20,970	23,300	25,630	2,330	16,310
	58.40	0.595	22,530	25,030	27,540	2,503	17,521
	59.40	0.609	25,210	28,010	30,810	2,801	19,607
	62.80	0.625	22,610	25,120	27,630	2,512	17,584
	65.30	0.650	23,220	25,800	28,380	2,580	18,060
	66.40	0.661	23,480	26,090	28,700	2,609	18,263
9 7⁄8	66.90	0.668	23,650	26,280	28,910	2,628	18,396
	67.50	0.678	23,880	26,530	29,190	2,653	18,571
	68.00	0.694	24,250	26,940	29,640	2,694	18,858
	68.90	0.700	24,380	27,090	29,800	2,709	18,963

		Pipe	e 90, 95 ksi Grade Torque (ft-lb)					
Size		Body Wall	I	Final Torque	9	Shoulde	r Torque	
(inch)	Weight (lb/ft)	(inch)	Min	Opt	Max	Min	Max	
	23.00	0.317	10,090	11,210	12,330	1,121	7,847	
	26.00	0.362	11,730	13,030	14,340	1,303	9,121	
	29.00	0.408	13,210	14,680	16,150	1,468	11,744	
	32.00	0.453	14,450	16,050	17,660	1,605	11,235	
	35.00	0.498	15,920	17,690	19,460	1,769	12,383	
	38.00	0.540	17,170	19,080	20,990	1,908	13,356	
	29.70	0.375	15,450	17,170	18,880	1,717	12,019	
	33.70	0.430	18,100	20,110	22,120	2,011	14,077	
	39.00	0.500	20,190	22,430	24,680	2,243	15,701	
/ 3/8	42.80	0.562	22,000	24,440	26,890	2,444	17,108	
	45.30	0.595	23,080	25,640	28,210	2,564	17,948	
	47.10	0.625	23,600	26,220	28,840	2,622	18,354	
	40.00	0.395	18,050	20,060	22,060	2,006	14,042	
	43.50	0.435	20,170	22,410	24,650	2,241	15,687	
0.5/	47.00	0.472	22,300	24,780	27,260	2,478	17,346	
9 %	53.50	0.545	24,900	27,700	30,500	2,770	19,390	
	58.40	0.595	26,760	29,730	32,710	2,973	20,811	
	59.40	0.609	29,930	33,260	36,580	3,326	23,282	
	62.80	0.625	26,850	29,830	32,820	2,983	20,881	
	65.30	0.650	27,570	30,630	33,700	3,063	21,441	
	66.40	0.661	27,890	30,990	34,090	3,099	21,693	
9 7/8	66.90	0.668	28,080	31,200	34,320	3,120	21,840	
	67.50	0.678	28,360	31,510	34,660	3,151	22,057	
	68.00	0.694	28,790	31,990	35,190	3,199	22,393	
ĺĺ	68.90	0.700	28,950	32,170	35,380	3,217	22,519	

JFETIGER DIFETIGER API

		Pipe	105, 110 ksi Grade Torque (ft-lb)						
Size		Body Wall	F	inal Torqu		Shoulde	r Torque		
(inch)	Weight (lb/ft)	(inch)	Min	Opt	Max	Min	Max		
	23.00	0.317	10,090	11,210	12,330	1,121	7,847		
	26.00	0.362	11,730	13,030	14,340	1,303	9,121		
7	29.00	0.408	13,210	14,680	16,150	1,468	11,744		
	32.00	0.453	14,450	16,050	17,660	1,605	11,235		
	35.00	0.498	15,920	17,690	19,460	1,769	12,383		
	38.00	0.540	17,170	19,080	20,990	1,908	13,356		
	29.70	0.375	15,450	17,170	18,880	1,717	12,019		
	33.70	0.430	18,100	20,110	22,120	2,011	14,077		
75%	39.00	0.500	20,190	22,430	24,680	2,243	15,701		
1 78	42.80	0.562	22,000	24,440	26,890	2,444	17,108		
	45.30	0.595	23,080	25,640	28,210	2,564	17,948		
	47.10	0.625	23,600	26,220	28,840	2,622	18,354		
	40.00	0.450	22,710	25,230	27,760	2,520	17,661		
	44.00	0.500	24,720	27,470	30,210	2,750	19,229		
	49.00	0.557	25,295	28,110	30,920	2,810	19,677		
	52.00	0.595	25,640	28,490	31,340	2,850	19,943		
	54.00	0.625	26,990	29,990	32,990	3,000	20,993		
8 5⁄8	57.40	0.656	28,360	31,510	34,660	3,150	22,057		
	58.70	0.687	29,730	33,030	36,340	3,300	23,121		
	59.20	0.700	30,300	33,670	37,030	3,370	23,569		
	44.00(SC90)	0.500	24,720	27,470	30,210	2,750	19,229		
	58.70(SC90)	0.687	29,730	33,030	36,340	3,300	23,121		
	59.20(SC83)	0.700	30,300	33,670	37,030	3,370	23,569		
	40.00	0.395	18,050	20,060	22,060	2,006	14,042		
	43.50	0.435	20,170	22,410	24,650	2,241	15,687		
0.5%	47.00	0.472	22,300	24,780	27,260	2,478	17,346		
578	53.50	0.545	24,900	27,700	30,500	2,770	19,390		
	58.40	0.595	26,760	29,730	32,710	2,973	20,811		
	59.40	0.609	29,930	33,260	36,580	3,326	23,282		
	62.80	0.625	26,850	29,830	32,820	2,983	20,881		
	65.30	0.650	27,570	30,630	33,700	3,063	21,441		
	66.40	0.661	27,890	30,990	34,090	3,099	21,693		
9 7⁄8	66.90	0.668	28,080	31,200	34,320	3,120	21,840		
	67.50	0.678	28,360	31,510	34,660	3,151	22,057		
	68.00	0.694	28,790	31,990	35,190	3,199	22,393		
	68.90	0.700	28,950	32,170	35,380	3,217	22,519		

		Pipe		125 ksi	e 125 ksi Grade Torque (ft-lb)					
Size		Body Wall	I	inal Torque	9	Shoulde	r Torque			
(inch)	Weight (lb/ft)	(inch)	Min	Opt	Max	Min	Max			
	23.00	0.317	10,090	11,210	12,330	1,121	7,847			
	26.00	0.362	11,730	13,030	14,340	1,303	9,121			
7	29.00	0.408	13,210	14,680	16,150	1,468	11,744			
'	32.00	0.453	14,450	16,050	17,660	1,605	11,235			
	35.00	0.498	15,920	17,690	19,460	1,769	12,383			
	38.00	0.540	17,170	19,080	20,990	1,908	13,356			
	29.70	0.375	15,450	17,170	18,880	1,717	12,019			
	33.70	0.430	18,100	20,110	22,120	2,011	14,077			
7.5/	39.00	0.500	20,190	22,430	24,680	2,243	15,701			
1 %8	42.80	0.562	22,000	24,440	26,890	2,444	17,108			
	45.30	0.595	23,080	25,640	28,210	2,564	17,948			
	47.10	0.625	23,600	26,220	28,840	2,622	18,354			
	40.00	0.450	22,710	25,230	27,760	2,520	17,661			
	44.00	0.500	24,720	27,470	30,210	2,750	19,229			
	49.00	0.557	25,295	28,110	30,920	2,810	19,677			
	52.00	0.595	25,640	28,490	31,340	2,850	19,943			
	54.00	0.625	26,990	29,990	32,990	3,000	20,993			
8 5⁄8	57.40	0.656	28,360	31,510	34,660	3,150	22,057			
	58.70	0.687	29,730	33,030	36,340	3,300	23,121			
	59.20	0.700	30,300	33,670	37,030	3,370	23,569			
	44.00(SC90)	0.500	24,720	27,470	30,210	2,750	19,229			
	58.70(SC90)	0.687	29,730	33,030	36,340	3,300	23,121			
	59.20(SC83)	0.700	30,300	33,670	37,030	3,370	23,569			
	40.00	0.395	18,050	20,060	22,060	2,006	14,042			
	43.50	0.435	20,170	22,410	24,650	2,241	15,687			
0.5/	47.00	0.472	22,300	24,780	27,260	2,478	17,346			
9 %	53.50	0.545	24,900	27,700	30,500	2,770	19,390			
	58.40	0.595	26,760	29,730	32,710	2,973	20,811			
	59.40	0.609	29,930	33,260	36,580	3,326	23,282			
	62.80	0.625	26,850	29,830	32,820	2,983	20,881			
	65.30	0.650	27,570	30,630	33,700	3,063	21,441			
	66.40	0.661	27,890	30,990	34,090	3,099	21,693			
9 7⁄8	66.90	0.668	28,080	31,200	34,320	3,120	21,840			
	67.50	0.678	28,360	31,510	34,660	3,151	22,057			
	68.00	0.694	28,790	31,990	35,190	3,199	22,393			
	68.90	0.700	28,950	32,170	35,380	3,217	22,519			

18 JFELION Make-up Torques

JFELION API

			80, 85 ksi Grade Torque (ft-lb)							
Size	Weight	Pipe Body		Final Torque	9	Shoulde	r Torque			
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum			
	6.4	0.217	2,000	2,100	2,220	210	1,890			
0.74	7.8	0.276	2,840	2,990	3,140	299	2,691			
2 1/8	8.6	0.308	3,100	3,260	3,420	326	2,934			
	9.35	0.34	3,350	3,530	3,710	353	3,177			
	9.2	0.254	3,240	3,590	3,950	359	3,052			
	10.2	0.289	3,730	4,140	4,550	414	3,519			
3 1⁄2	12.7	0.375	4,940	5,480	6,030	548	4,658			
	14.3	0.43	5,710	6,340	6,970	634	5,389			
	14.8	0.449	5,980	6,640	7,300	664	5,644			
	12.6	0.271	6,030	6,690	7,360	669	5,687			
	13.5	0.29	6,200	6,880	7,570	688	5,848			
	15.2	0.337	6,460	7,170	7,890	717	6,095			
4.17	17	0.38	6,740	7,490	8,240	749	6,367			
4 1/2	17.7	0.402	6,890	7,650	8,410	765	6,502			
	18.9	0.43	7,070	7,850	8,640	785	6,673			
	21.5	0.5	10,930	11,880	12,830	1188	10,098			
	23.7	0.56	13,520	14,700	15,880	1,470	12,495			
	15	0.296	6,380	7,100	7,820	710	6,035			
	18	0.362	8,040	8,900	9,760	890	7,565			
5	21.4	0.437	9,310	10,300	11,290	1,030	8,755			
	23.2	0.478	9,970	11,100	12,230	1,110	9,435			
	24.1	0.5	10,250	11,400	12,550	1,140	9,690			
	15.5	0.275	8,510	9,200	9,890	920	7,820			
	17	0.304	9,690	10,480	11,270	1,048	8,908			
	20	0.361	12,030	13,000	14,000	1,300	11,050			
E 1/	23	0.415	14,060	15,200	16,340	1,520	12,920			
5 1/2	26	0.476	15,240	16,480	17,720	1,648	14,008			
	26.8	0.5	15,240	16,480	17,720	1,648	14,008			
	28.4	0.53	16,820	18,180	19,540	1,818	15,453			
	29.7	0.562	18,050	19,510	20,970	1,951	16,584			
6	22.8	0.375	11,610	12,900	14,190	1,290	10,965			
Ю	32	0.519	15,570	17,300	19,030	1,770	13,275			
6.068	32.6	0.553	11,700	13,000	14,300	1,300	11,050			

			90, 95 ksi Grade Torque (ft-lb)						
Size	Weinht	Pine Rody		Final Torque		Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	6.4	0.217	2,330	2,520	2,710	252	2,142		
0.7/	7.8	0.276	2,940	3,180	3,420	318	2,703		
2 1/8	8.6	0.308	3,190	3,450	3,710	345	2,933		
	9.35	0.34	3,510	3,800	4,090	380	3,230		
	9.2	0.254	3,520	3,910	4,300	391	3,324		
	10.2	0.289	4,000	4,440	4,880	444	3,774		
3 1/2	12.7	0.375	5,170	5,740	6,310	574	4,879		
	14.3	0.43	5,920	6,570	7,230	657	5,585		
	14.8	0.449	6,180	6,860	7,550	686	5,831		
	12.6	0.271	6,300	7,000	7,700	700	5,950		
	13.5	0.29	6,470	7,190	7,910	719	6,112		
	15.2	0.337	6,740	7,480	8,230	748	6,358		
4.17	17	0.38	7,020	7,800	8,580	780	6,630		
4 1/2	17.7	0.402	7,170	7,960	8,750	796	6,766		
	18.9	0.43	7,350	8,160	8,980	816	6,936		
	21.5	0.5	12,210	13,280	14,350	1328	11,288		
	23.7	0.56	14,070	15,300	16,530	1,530	13,005		
	15	0.296	6,570	7,300	8,030	730	6,205		
	18	0.362	8,080	9,000	9,920	900	7,650		
5	21.4	0.437	9,360	10,400	11,440	1,040	8,840		
	23.2	0.478	10,220	11,300	12,380	1,130	9,605		
	24.1	0.5	10,320	11,500	12,680	1,150	9,775		
	15.5	0.275	8,510	9,200	9,890	920	7,820		
	17	0.304	9,690	10,480	11,270	1,048	8,908		
	20	0.361	12,030	13,000	14,000	1,300	11,050		
F 1/	23	0.415	14,060	15,200	16,340	1,520	12,920		
5 1/2	26	0.476	15,240	16,480	17,720	1,648	14,008		
	26.8	0.5	15,240	16,480	17,720	1,648	14,008		
	28.4	0.53	16,820	18,180	19,540	1,818	15,453		
	29.7	0.562	18,050	19,510	20,970	1,951	16,584		
6	22.8	0.375	12,330	13,700	15,070	1,370	11,645		
ю	32	0.519	15,930	17,700	19,470	1,770	13,275		
6.068	32.6	0.553	13,140	14,600	16,060	1,460	12,410		

JFELION API

JFELION

			105, 110 ksi Grade Torque (ft-lb)						
Size	Weight	Pipe Body		Final Torque)	Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	6.4	0.217	2,370	2,570	2,760	257	2,185		
0.7/	7.8	0.276	3,110	3,360	3,610	336	2,856		
2 1/8	8.6	0.308	3,430	3,710	3,990	371	3,154		
	9.35	0.34	3,770	4,070	4,370	407	3,460		
	9.2	0.254	3,960	4,390	4,830	439	3,732		
	10.2	0.289	4,480	4,960	5,460	496	4,216		
3 ½	12.7	0.375	5,750	6,380	7,020	638	5,423		
	14.3	0.43	6,560	7,280	8,010	728	6,188		
	14.8	0.449	6,840	7,590	8,350	759	6,452		
	12.6	0.271	7,110	7,900	8,690	790	6,715		
	13.5	0.29	7,280	8,090	8,900	809	6,877		
	15.2	0.337	7,550	8,390	9,230	839	7,132		
4.17	17	0.38	7,840	8,710	9,580	871	7,404		
4 1⁄2	17.7	0.402	7,990	8,870	9,750	887	7,539		
	18.9	0.43	8,180	9,080	9,990	908	7,718		
	21.5	0.5	13,110	14,250	15,390	1425	12,113		
	23.7	0.56	15,500	16,850	18,200	1,685	14,323		
	15	0.296	7,620	8,500	9,380	850	7,225		
	18	0.362	9,490	10,500	11,510	1,050	8,925		
5	21.4	0.437	10,940	12,100	13,260	1,210	10,285		
	23.2	0.478	11,680	13,000	14,320	1,300	11,050		
	24.1	0.5	12,040	13,400	14,760	1,340	11,390		
	15.5	0.275	8,780	9,750	10,730	975	8,287		
	17	0.304	9,940	11,040	12,140	1,104	9,384		
	20	0.361	12,090	13,430	14,770	1,343	11,415		
E 1/	23	0.415	14,230	15,810	17,390	1,581	13,438		
5 1/2	26	0.476	15,340	17,040	18,740	1,704	14,484		
	26.8	0.5	15,340	17,040	18,740	1,704	14,484		
	28.4	0.53	17,320	19,240	21,160	1,924	16,354		
	29.7	0.562	18,540	20,600	22,660	2,060	17,510		
	22.8	0.375	13,510	15,010	16,510	1,501	12,759		
ť	32	0.519	16,280	18,080	19,880	1,808	14,464		
6.068	32.6	0.553	14,040	15,600	17,160	1,560	13,260		

			125 ksi Grade Torque (ft-lb)						
Size	Weight	Pipe Body		Final Torque)	Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	6.4	0.217	2,350	2,620	2,880	262	2,227		
0.74	7.8	0.276	3,270	3,630	3,990	363	3,086		
2 78	8.6	0.308	3,650	4,060	4,470	406	3,451		
	9.35	0.34	3,970	4,410	4,850	441	3,749		
	9.2	0.254	4,320	4,800	5,280	480	4,080		
	10.2	0.289	4,880	5,420	5,960	542	4,607		
3 1⁄2	12.7	0.375	6,260	6,950	7,650	695	5,908		
	14.3	0.43	7,140	7,930	8,720	793	6,741		
	14.8	0.449	7,440	8,270	9,090	827	7,030		
	12.6	0.271	7,860	8,730	9,600	873	7,421		
	13.5	0.29	8,030	8,920	9,810	892	7,582		
[15.2	0.337	8,300	9,220	10,140	922	7,837		
4.17	17	0.38	8,590	9,550	10,500	955	8,118		
4 1/2	17.7	0.402	8,730	9,710	10,670	971	8,253		
	18.9	0.43	8,930	9,920	10,910	992	8,432		
	21.5	0.5	14,170	15,400	16,630	1540	13,090		
	23.7	0.56	16,190	17,600	19,010	1,760	14,960		
	15	0.296	8,600	9,500	10,400	950	8,075		
	18	0.362	10,350	11,500	12,650	1,150	9,775		
5	21.4	0.437	11,740	13,100	14,460	1,310	11,135		
	23.2	0.478	12,790	14,200	15,610	1,420	12,070		
	24.1	0.5	13,190	14,600	16,010	1,460	12,410		
	15.5	0.275	9,270	10,300	11,330	1030	8,755		
	17	0.304	10,440	11,600	12,760	1,160	9,860		
	20	0.361	12,800	14,220	15,640	1,422	12,087		
F 1/	23	0.415	14,790	16,430	18,070	1,643	13,965		
5 1/2	26	0.476	15,840	17,600	19,360	1,760	14,960		
ſ	26.8	0.5	15,840	17,600	19,360	1,760	14,960		
Γ	28.4	0.53	17,550	19,500	21,450	1,950	16,575		
	29.7	0.562	21,330	23,700	26,070	2,370	20,145		
6	22.8	0.375	14,580	16,200	17,820	1,620	13,770		
0	32	0.519	20,700	23,000	25,300	2,300	18,975		
6.068	32.6	0.553	14,850	16,500	18,150	1,650	14,025		

JFELION JFELION API

			80, 85 ksi Grade Torque (ft-lb)						
Size	Weight	Pipe Body		Final Torque		Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	20	0.288	7.32	10,000	11,000	1,000	8,500		
	24	0.352	8.94	13,760	14,790	1376	11,696		
6 5⁄8	28	0.417	10.59	15,670	16,850	1567	13,319		
	32	0.475	12.06	18,680	20,080	1868	15,878		
	40.2	0.625	15.88	25,000	27,500	2,500	21,250		
	23	0.317	8.05	11,600	12,470	1,160	9,860		
	26	0.362	9.19	13,800	14,840	1,380	11,730		
	29	0.408	10.36	15,400	16,560	1,540	13,090		
7	32	0.453	11.51	15,800	16,990	1,580	13,430		
	35	0.498	12.65	18,600	20,000	1,860	15,810		
	38	0.54	13.72	21,300	22,900	2,130	18,105		
	42.7	0.625	15.88	22,800	24,510	2,280	19,380		
	26.4	0.328	8.33	10,900	11,720	1,090	9,265		
	29.7	0.375	9.52	12,100	13,010	1,210	10,285		
7.5/	33.7	0.43	10.92	15,700	16,880	1,570	13,345		
1 %8	35.8	0.46	11.68	17,300	18,600	1,730	14,705		
	39	0.5	12.7	21,000	22,580	2,100	17,850		
	42.8	0.562	14.27	23,800	25,590	2,380	20,230		
	36	0.4	10.16	16,000	17,600	1,600	12,000		
	40	0.45	11.43	18,900	20,790	1,890	14,175		
	44	0.5	12.7	22,400	24,640	2,240	16,800		
8 5⁄8	49	0.557	14.15	26,300	28,930	2,630	19,725		
	52	0.595	15.11	27,400	30,140	2,740	20,550		
	54	0.625	15.88	29,400	32,340	2,940	22,050		
	57.4	0.656	16.66	30,900	33,990	3,090	23,175		
	43.5	0.435	11.05	22,800	25,080	2,280	17,100		
	47	0.472	11.99	24,100	26,510	2,410	18,075		
9 5⁄8	53.5	0.545	13.84	26,800	29,480	2,680	20,100		
	58.4	0.595	15.11	30,100	33,110	3,010	22,575		
	59.4	0.609	15.47	30,400	33,440	3,040	22,800		
	62.8	0.625	15.88	32,700	35,970	3,270	24,525		
	65.3	0.65	16.51	34,500	37,950	3,450	25,875		
	66.4	0.661	16.79	35,300	38,830	3,530	26,475		
9 7⁄8	66.9	0.668	16.97	35,800	39,380	3,580	26,850		
	67.5	0.678	17.22	36,700	40,370	3,670	27,525		
	68	0.694	17.63	37,600	41,360	3,760	28,200		
	68.9	0.7	17.78	38,000	41,800	3,800	28,500		

			90, 95 ksi Grade Torque (ft-lb)						
Size	Weinht	Pine Body		Final Torque)	Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	20	0.288	9,540	10,600	11,660	1,060	9,010		
	24	0.352	13,240	14,310	15,380	1,431	12,163		
6 5⁄8	28	0.417	15,070	16,290	17,510	1,629	13,846		
	32	0.475	17,760	19,200	20,640	1,920	16,320		
	40.2	0.625	23,850	26,500	29,150	2,650	22,525		
	23	0.317	11,560	12,500	13,440	1,250	10,625		
	26	0.362	13,410	14,500	15,590	1,450	12,325		
	29	0.408	15,080	16,300	17,520	1,630	13,855		
7	32	0.453	15,360	16,600	17,850	1,660	14,110		
	35	0.498	17,850	19,300	20,750	1,930	16,405		
	38	0.54	20,350	22,000	23,650	2,200	18,700		
	42.7	0.625	21,960	24,400	26,840	2,440	20,740		
	26.4	0.328	10,640	11,500	12,360	1,150	9,775		
	29.7	0.375	12,030	13,000	13,980	1,300	11,050		
	33.7	0.43	15,080	16,300	17,520	1,630	13,855		
/ %	35.8	0.46	16,930	18,300	19,670	1,830	15,555		
	39	0.5	20,350	22,000	23,650	2,200	18,700		
	42.8	0.562	22,940	24,800	26,660	2,480	21,080		
	36	0.4	15,930	17,700	19,470	1,770	13,275		
	40	0.45	18,900	21,000	23,100	2,100	15,750		
	44	0.5	21,690	24,100	26,510	2,410	18,075		
8 5 %	49	0.557	25,560	28,400	31,240	2,840	21,300		
	52	0.595	26,550	29,500	32,450	2,950	22,125		
	54	0.625	28,440	31,600	34,760	3,160	23,700		
	57.4	0.656	29,790	33,100	36,410	3,310	24,825		
	43.5	0.435	21,600	24,000	26,400	2,400	18,000		
	47	0.472	22,590	25,100	27,610	2,510	18,825		
9 5 %	53.5	0.545	25,380	28,200	31,020	2,820	21,150		
ÌÌ	58.4	0.595	28,620	31,800	34,980	3,180	23,850		
ÌÌ	59.4	0.609	28,980	32,200	35,420	3,220	24,150		
	62.8	0.625	31,770	35,300	38,830	3,530	26,475		
	65.3	0.65	33,480	37,200	40,920	3,720	27,900		
	66.4	0.661	34,290	38,100	41,910	3,810	28,575		
9 7/8	66.9	0.668	34,740	38,600	42,460	3,860	28,950		
	67.5	0.678	35,640	39,600	43,560	3,960	29,700		
	68	0.694	36,540	40,600	44,660	4,060	30,450		
	68.9	0.7	36,900	41,000	45,100	4,100	30,750		

JFELION JFELION API

			105, 110 ksi Grade Torque (ft-lb)						
Size	Weight	Pipe Body		Final Torque		Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	20	0.288	11,430	12,700	13,970	1,270	10,795		
	24	0.352	13,730	15,260	16,790	1,526	12,971		
6 5⁄8	28	0.417	15,490	17,210	18,930	1,721	14,628		
	32	0.475	17,930	19,920	21,910	1,992	16,932		
	40.2	0.625	27,090	30,100	33,110	3,010	25,585		
	23	0.317	12,420	13,800	15,180	1,380	11,730		
	26	0.362	13,950	15,500	17,050	1,550	13,175		
	29	0.408	15,660	17,400	19,140	1,740	14,790		
7	32	0.453	15,840	17,600	19,360	1,760	14,960		
	35	0.498	18,050	20,050	22,060	2,005	17,042		
	38	0.54	20,250	22,500	24,750	2,250	19,125		
	42.7	0.625	23,400	26,000	28,600	2,600	22,100		
	26.4	0.328	10,890	12,100	13,310	1,210	9,075		
	29.7	0.375	12,420	13,800	15,180	1,380	10,350		
75/	33.7	0.43	15,210	16,900	18,590	1,690	12,675		
1 %8	35.8	0.46	17,280	19,200	21,120	1,920	14,400		
	39	0.5	20,610	22,900	25,190	2,290	17,175		
	42.8	0.562	23,130	25,700	28,270	2,570	19,275		
	36	0.4	17,730	19,700	21,670	1,970	14,775		
	40	0.45	20,700	23,000	25,300	2,300	17,250		
	44	0.5	23,670	26,300	28,930	2,630	19,725		
8 5⁄8	49	0.557	27,540	30,600	33,660	3,060	22,950		
	52	0.595	28,890	32,100	35,310	3,210	24,075		
	54	0.625	30,780	34,200	37,620	3,420	25,650		
	57.4	0.656	32,220	35,800	39,380	3,580	26,850		
	43.5	0.435	24,570	27,300	30,030	2,730	20,475		
	47	0.472	25,920	28,800	31,680	2,880	21,600		
9 5⁄8	53.5	0.545	28,800	32,000	35,200	3,200	24,000		
	58.4	0.595	31,500	35,000	38,500	3,500	26,250		
	59.4	0.609	31,590	35,100	38,610	3,510	26,325		
	62.8	0.625	34,830	38,700	42,570	3,870	29,025		
	65.3	0.65	36,630	40,700	44,770	4,070	30,525		
	66.4	0.661	38,790	43,100	47,410	4,310	32,325		
9 7⁄8	66.9	0.668	39,240	43,600	47,960	4,360	32,700		
	67.5	0.678	40,950	45,500	50,000	4,550	34,125		
	68	0.694	40,950	45,500	50,000	4,550	34,125		
	68.9	0.7	40,950	45,500	50,000	4,550	34,125		

Size (inch) Weight (lb/ti) Pipe Bady Wall (inch) Final Torque Minimu Maximu Minimu N 20 0.288 12,240 13,600 14,960 1,360 1 22 0.288 12,240 13,600 14,960 1,360 1 24 0.352 14,950 16,610 18,270 1,861 1 65% 28 0.417 16,910 18,790 20,670 1,879 1 32 0.475 19,040 21,150 23,270 2,115 1 40.2 0.625 29,070 32,300 35,530 3,230 1	Torque Maximum 11,560 14,118 15,971 17,977 27,455 13,175 14,450
(ibc) (ib/) Wall (inch) Minimu Optimum Maximum Minimum N 20 0.288 12,240 13,600 14,960 1,3600 1,3600 1 1,3600 1 1,3600 1 1,3600 1 1,3600 1,3600 1,3600 1,3600 1,3600 1,3600 1,3600 1,3600 1,3600 1,3600 1,3600 1,3600 1,3600 1,41600 1,41600 1,41600	Maximum 11,560 14,118 15,971 17,977 27,455 13,175
20 0.288 12,240 13,600 14,960 1,360 6 % 24 0.352 14,950 16,610 18,270 1,661 1 6 % 28 0.417 16,910 18,790 20,670 1,879 32 0.475 19,040 21,150 23,270 2,115 40.2 0.625 29,070 32,300 35,530 3,230	11,560 14,118 15,971 17,977 27,455 13,175
24 0.352 14,950 16,610 18,270 1,661 6 % 28 0.417 16,910 18,790 20,670 1,879 32 0.475 19,040 21,150 23,270 2,115 4,21 40.2 0.625 29,070 32,300 35,530 3,230	14,118 15,971 17,977 27,455 13,175
6 % 28 0.417 16,910 18,790 20,670 1,879 32 0.475 19,040 21,150 23,270 2,115 40.2 0.625 29,070 32,300 35,530 3,230	15,971 17,977 27,455 13,175
32 0.475 19,040 21,150 23,270 2,115 40.2 0.625 29,070 32,300 35,530 3,230	17,977 27,455 13,175
40.2 0.625 29,070 32,300 35,530 3,230	27,455 13,175
	13,175
23 0.317 13,950 15,500 17,050 1,550	1/ /50
26 0.362 15,300 17,000 18,700 1,700	14,450
29 0.408 17,280 19,200 21,120 1,920	16,320
7 32 0.453 17,460 19,400 21,340 1,940	16,490
35 0.498 19,350 21,500 23,650 2,150	18,275
38 0.54 20,610 22,900 25,190 2,290	19,465
42.7 0.625 24,930 27,700 30,470 2,770	23,545
26.4 0.328 11,520 12,800 14,080 1,280	9,600
29.7 0.375 13,140 14,600 16,060 1,460	10,950
33.7 0.43 16,110 17,900 19,690 1,790	13,425
7 % 35.8 0.46 18,360 20,400 22,440 2,040	15,300
39 0.5 21,960 24,400 26,840 2,440	18,300
42.8 0.562 24,570 27,300 30,030 2,730	20,475
36 0.4 19,080 21,200 23,320 2,120	15,900
40 0.45 22,500 25,000 27,500 2,500	18,750
44 0.5 25,290 28,100 30,910 2,810	21,075
8 5% 49 0.557 29,610 32,900 36,190 3,290	24,675
52 0.595 30,960 34,400 37,840 3,440	25,800
54 0.625 32,940 36,600 40,260 3,660	27,450
57.4 0.656 34,470 38,300 42,130 3,830	28,725
43.5 0.435 25,110 27,900 30,690 2,790	20,925
47 0.472 29,340 32,600 35,860 3,260	24,450
9 5% 53.5 0.545 31,680 35,200 38,720 3,520	26,400
58.4 0.595 34,650 38,500 42,350 3,850	28,875
59.4 0.609 34,920 38,800 42,680 3,880	29,100
62.8 0.625 37,440 41,600 45,760 4,160	31,200
65.3 0.65 39,330 43,700 48,070 4,370	32,775
66.4 0.661 40,950 45,500 50,000 4,550	34,125
9 7% 66.9 0.668 40,950 45,500 50,000 4,550	34,125
67.5 0.678 40,950 45,500 50,000 4,550	34,125
68 0.694 40,950 45,500 50,000 4,550	34,125
68.9 0.7 40,950 45,500 50,000 4,550	34,125

JFELION API

JFELION

			80, 85 ksi Grade Torque (ft-lb)						
Size	Weinht	Pine Body		Final Torque	1	Shoulde	r Torque		
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum		
	51	0.45	22,050	24,500	26,950	2,450	18,375		
	55.5	0.495	23,760	26,400	29,040	2,640	19,800		
10 3⁄4	60.7	0.545	26,550	29,500	32,450	2,950	22,125		
	65.7	0.595	30,780	34,200	37,620	3,420	25,650		
	73.2	0.672	36,990	41,100	45,210	4,110	30,825		
10 1/8	72	0.656	36,540	40,600	44,660	4,060	30,450		
	60	0.489	24,660	27,400	30,140	2,740	20,550		
11 3⁄4	65	0.534	29,430	32,700	35,970	3,270	24,525		
	71	0.582	34,470	38,300	42,130	3,830	28,725		
44.7/	62	0.5	25,920	28,800	31,680	2,880	21,600		
11.78	71.8	0.582	34,560	38,400	42,240	3,840	28,800		
	68	0.48	28,170	31,300	34,430	3,130	23,475		
	72	0.514	32,580	36,200	39,820	3,620	27,150		
	77	0.55	38,430	42,700	46,970	4,270	32,025		
13 3⁄8	80.7	0.58	39,150	43,500	47,850	4,350	32,625		
	85	0.608	40,950	45,500	50,000	4,550	34,125		
	86	0.625	40,950	45,500	50,000	4,550	34,125		
	92	0.672	48,150	53,500	58,850	5,350	45,475		
13 5⁄8	88.2	0.625	40,950	45,500	50,000	4,550	34,125		
	93	0.65	45,000	50,000	55,000	5,000	37,500		
14	100	0.7	49,500	55,000	60,500	5,500	46,750		
14	114	0.8	53,940	58,000	62,060	5,800	50,750		
	115	0.812	54,410	58,500	62,600	5,850	51,188		

				90, 95 ksi Grade Torque (ft-lb)							
Size	Weinht	Pine Body		Final Torque)	Shoulde	r Torque				
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum				
	51	0.45	23,670	26,300	28,930	2,630	19,725				
	55.5	0.495	25,560	28,400	31,240	2,840	21,300				
10 3⁄4	60.7	0.545	28,980	32,200	35,420	3,220	24,150				
	65.7	0.595	33,750	37,500	41,250	3,750	28,125				
	73.2	0.672	40,950	45,500	50,000	4,550	34,125				
10 7⁄8	72	0.656	40,500	45,000	49,500	4,500	33,750				
	60	0.489	26,910	29,900	32,890	2,990	22,425				
11 3⁄4	65	0.534	32,220	35,800	39,380	3,580	26,850				
	71	0.582	38,250	42,500	46,750	4,250	31,875				
11.7/	62	0.5	28,710	31,900	35,090	3,190	23,925				
11 7/8	71.8	0.582	38,520	42,800	47,080	4,280	32,100				
	68	0.48	30,600	34,000	37,400	3,400	25,500				
	72	0.514	35,730	39,700	43,670	3,970	29,775				
	77	0.55	40,950	45,500	50,000	4,550	34,125				
13 3/8	80.7	0.58	40,950	45,500	50,000	4,550	34,125				
	85	0.608	40,950	45,500	50,000	4,550	34,125				
	86	0.625	40,950	45,500	50,000	4,550	34,125				
	92	0.672	48,150	53,500	58,850	5,350	45,475				
13 5⁄8	88.2	0.625	40,950	45,500	50,000	4,550	34,125				
	93	0.65	45,000	50,000	55,000	5,000	37,500				
	100	0.7	49,500	55,000	60,500	5,500	46,750				
14	114	0.8	53,940	58,000	62,060	5,800	50,750				
	115	0.812	54,410	58,500	62,600	5,850	51,188				

				55 ksi l	Grade Torqu	e (ft-lb)	
Size	Weinht	Pine Body		Final Torque	•	Shoulde	r Torque
(inch)	(lb/ft)	Wall (inch)	Minimum	Optimum	Maximum	Minimum	Maximum
5 1⁄2	17	0.304	8,930	9,400	9,870	940	8,695
9 5⁄8	40	0.395	16,200	18,000	19,800	1,800	15,300

JFELION - Other Connections

			Pipe		80, 85 ks	i Grade To	rque (ft-lb)	
	Size	Weinht	Body Wall	Final Torque			Shoulder Torque	
Connection	(inch)	(lb/ft)	(inch)	Min	Opt	Max	Min	Max
JFELION CBR	95⁄8	53.5	0.545	-	-	-	-	-
JFELION DR ASM	10¾	85.3	0.797	42,390	47,100	51,810	4,710	35,325
JFELION DR SS	101/8	79.3	0.795	44,100	49,000	53,900	4,900	36,740

			Pipe		90,95 ks	i Grade To	rque (ft-lb)	
	Size	Weinht	Body Wall	F	inal Torqu	e	Shoulde	r Torque
Connection	(inch)	(lb/ft)	(inch)	Min	Opt	Max	Min	Max
JFELION CBR	95⁄8	53.5	0.545	-	-	-	-	-
JFELION DR ASM	10¾	85.3	0.797	47,070	52,300	57,530	5,230	39,225
JFELION DR SS	101⁄8	79.3	0.795	45,000	50,000	55,000	5,000	37,500

			Pipe	1	00, 105 k	si Grade T	orque (ft-ll))
	Size	Weight	Body Wall	F	inal Torqu	e	Shoulde	r Torque
Connection	(inch)	(lb/ft)	(inch)	Min	Opt	Max	Min	Max
JFELION CBR	95⁄8	53.5	0.545	26,300	29,220	32,140	2,922	21,915
JFELION DR ASM	10¾	85.3	0.797	51,210	56,900	62,590	5,690	42,675
JFELION DR SS	101/8	79.3	0.795	45,000	50,000	55,000	5,000	37,500

			Pipe		125 ksi	Grade Toro	jue (ft-lb)	
	Size	Weinht	Body Wall	F	inal Torqu	e	Shoulde	r Torque
Connection	(inch)	(lb/ft)	(inch)	Min	Opt	Max	Min	Max
JFELION CBR	95⁄8	53.5	0.545	-	-	-	-	-
JFELION DR ASM	10¾	85.3	0.797	57,280	63,640	70,000	6,360	47,730
JFELION DR SS	101⁄8	79.3	0.795	45,000	50,000	55,000	5,000	37,500

19 JFECOBRA Make-up Torques

JFECOBRA 🌍 JFECOBRA API

			80, 85 ksi Grade Torque (ft-lb)							
Size	Weinht		Final Torque	Shoulde	r Torque					
(inch)	(lb/ft)	Minimum	Optimum	Maximum	Minimum	Maximum				
5	24.1	10090	10900	11710	1090	9538				
5 1/2	26	6750	7500	8250	750	6375				
7 5⁄8	39	13320	14800	16280	1480	12580				
9 5⁄8	53.5	19350	21500	23650	2150	18275				
9 5⁄8	80.8	29700	33000	36300	3300	28050				
10	68.7	20520	22800	25080	2280	19380				
10 3⁄4	73.2	27900	31000	34100	3100	26350				
13 5⁄8	88.2	34290	38100	41910	3810	32385				
14	115	45000	50000	55000	5000	42500				
14	116	45000	50000	55000	5000	42500				
16	109	40500	45000	49500	4500	38250				

20 FOX Make-up Torques

\otimes	
V	

		Pipe			Field Torque (ft-lb) / APImod (FF=1.0)					
Size	Weight	Body Wall			Minimum	Optimum	Maximum	Maximum		
(inch)	(ppf)	(inch)	Material	Grade	Torque	Torque	Torque	Shoulder		
				80ksi	930	1,000	1,070	460		
			Chrome	85ksi	970	1,040	1,120	470		
			≥9%CB	95ksi	1,040	1,120	1,200	480		
				110ksi	1,160	1,250	1,330	510		
				125ksi	1,270	1,370	1,460	530		
				55ksi	860	920	990	550		
2 3⁄8	4.60	0.190		80ksi	1,050	1,130	1,210	590		
				85ksi	1,090	1,170	1,250	600		
			Carbon	90ksi	1,120	1,200	1,290	590		
			Carbon	95ksi	1,160	1,250	1,330	610		
				110ksi	1,270	1,370	1,460	630		
				125ksi	1,390	1,490	1,600	650		
				140ksi	1,500	1,610	1,730	670		
				80ksi	1,280	1,380	1,470	600		
			Chrome	85ksi	1,340	1,440	1,540	610		
					95ksi	1,450	1,560	1,670	640	
			- 3 /000	110ksi	1,610	1,730	1,850	660		
	5.80 0.254			125ksi	1,770	1,900	2,040	690		
					v	1,160	1,250	1,330	720	
2 3⁄8		5.80 0.254		80ksi	1,430	1,540	1,640	760		
					85ksi	1,490	1,600	1,710	770	
		0	90ksi	1,540	1,660	1,770	790			
			Carbon	95ksi	1,600	1,720	1,840	800		
				110ksi	1,760	1,890	2,020	820		
				125ksi	1,920	2,060	2,210	850		
				140ksi	2,080	2,240	2,390	880		
						80ksi	1,470	1,580	1,690	770
			Chrome 85ksi 1,530 1,640 1,76		1,760	780				
			Chrome	95ksi	1,640	1,760	1,890	800		
			29%00n	110ksi	1,810	1,950	2,080	840		
				125ksi	1,980	2,130	2,280	860		
				55ksi	1,420	1,530	1,630	970		
2 1⁄8	6.40	0.217		80ksi	1,700	1,830	1,960	1,020		
				85ksi	1,760	1,890	2,020	1,030		
				90ksi	1,810	1,950	2,080	1,040		
			Carbon	95ksi	1,870	2,010	2,150	1,050		
				110ksi	2,040	2,190	2,350	1,080		
				125ksi	2,210	2,380	2,540	1,110		
				140ksi	2,380	2,560	2,740	1,140		
			Ì	80ksi	1,960	2.110	2.250	940		
				85ksi	2,040	2,190	2,350	950		
			Chrome	95ksi	2,200	2,370	2,530	980		
			≥9%CR	110ksi	2,450	2,630	2,820	1.020		
				125ksi	2,690	2,890	3,090	1 060		
				55ksi	1 820	1,960	2 090	1 150		
2 7/8	780	0 276		80ksi	2 220	2 390	2,550	1 2 2 0		
L /0	1.00	0.210		85ksi	2 310	2,000	2,000	1 2/10		
				90ksi	2,010	2 570	2,000	1 250		
			Carbon	95kei	2,000	2,570	2,130	1 270		
				11040	2,470	2,000	2,040	1 200		
					12540	2,110	2,910	3,120	1 250	
				1/0/201	2,300	3,100	3,400	1 200		
	1			1140001	0.200	0.440	0.000	1.000		

		Pipe			Field To	rque (ft-lb)	/ APImod	(FF=1.0)		
Size	Weight	Body Wall	Madaulal	Question	Minimum	Optimum	Maximum	Maximum		
(inch)	(ppt)	(inch)	materiai	Grade	lorque	lorque	lorque	Shoulder		
				80KSI	2,240	2,410	2,580	1,090		
			Chrome	85KSI	2,330	2,500	2,680	1,100		
			≥9%CR	95KSI	2,510	2,700	2,890	1,140		
		0.000		TIUKSI	2,790	3,000	3,210	1,190		
				125KSI	3,060	3,290	3,520	1,240		
0.7/	0.00			55KSI	2,100	2,260	2,420	1,360		
2 1/8	8.60	0.308		80KSI	2,550	2,740	2,930	1,420		
				85KSI	2,640	2,840	3,040	1,440		
			Carbon	90KSI	2,740	2,950	3,150	1,470		
				95KSI	2,830	3,040	3,250	1,480		
				105ksi	3,100	3,330	3,570	1,520		
				125KSI	3,370	3,620	3,880	1,570		
				140KSI	3,650	3,920	4,200	1,620		
				80KSI	1,940	2,090	2,230	920		
			Chrome	85KSI	2,020	2,170	2,320	930		
		0.016	≥9%CR	95KSI	2,180	2,340	2,510	950		
				110ksi	2,430	2,610	2,790	1,000		
				125ksi	2,670	2,870	3,070	1,040		
				55KSI	1,800	1,940	2,070	1,140		
3 1/2	7.70	7.70	0.216		80ksi	2,200	2,370	2,530	1,200	
				85ksi	2,280	2,450	2,620	1,210		
			Carbon	90ksi	2,360	2,540	2,710	1,230		
				95ksi	2,440	2,620	2,810	1,230		
				110ksi	2,690	2,890	3,090	1,280		
				125ksi	2,930	3,150	3,370	1,320		
				140ksi	3,170	3,410	3,650	1,370		
						80ksi	2,380	2,560	2,740	1,060
				Chrome	85ksi	2,490	2,680	2,860	1,080	
			≥9%CR	95ksi	2,700	2,900	3,110	1,120		
				110ksi	3,010	3,240	3,460	1,170		
				125ksi	3,320	3,570	3,820	1,220		
				55ksi	2,150	2,310	2,470	1,280		
3 1⁄2	9.20	0.254		80ksi	2,670	2,870	3,070	1,370		
				85ksi	2,780	2,990	3,200	1,390		
			Carbon	90ksi	2,880	3,100	3,310	1,410		
			ourbon	95ksi	2,980	3,200	3,430	1,420		
				110ksi	3,300	3,550	3,800	1,480		
				125ksi	3,610	3,880	4,150	1,530		
				140ksi	3,920	4,210	4,510	1,580		
				80ksi	2,630	2,830	3,020	1,270		
			Chromo	85ksi	2,740	2,950	3,150	1,290		
				95ksi	2,960	3,180	3,400	1,330		
			- 5 /0011	110ksi	3,280	3,530	3,770	1,390		
				125ksi	3,610	3,880	4,150	1,440		
3 1⁄2 10.20			55ksi	2,460	2,640	2,830	1,570			
	0.289		80ksi	3,000	3,230	3,450	1,670			
				85ksi	3,110	3,340	3,580	1,680		
			Carbon	90ksi	3,220	3,460	3,700	1,710		
			JUAIDUI	95ksi	3,320	3,570	3,820	1,720		
				110ksi	3,650	3,920	4,200	1,780		
				125ksi	3,970	4,270	4,570	1,830		
				140ksi	4,300	4,620	4,950	1,890		

		Pipe			Field To	rque (ft-lb)	/ APImod	(FF=1.0)		
Size	Weight	Wall			Minimum	Optimum	Maximum	Maximum		
(inch)	(ppf)	(inch)	Material	Grade	Torque	Torque	Torque	Shoulder		
				80KSI	3,920	4,210	4,510	1,630		
			Chrome	85KSI	4,100	4,410	4,720	1,660		
			≥9%CR	95ksi	4,460	4,790	5,130	1,720		
				110ksi	5,000	5,380	5,750	1,830		
				125ksi	5,540	5,950	6,370	1,910		
		0.075		55KSI	3,450	3,710	3,970	1,930		
3 1/2	12.70	0.375		80KSI	4,350	4,680	5,000	2,100		
				85KSI	4,530	4,870	5,210	2,120		
			Carbon	90ksi	4,/10	5,060	5,420	2,150		
				95KSI	4,890	5,260	5,620	2,190		
				110ksi	5,420	5,830	6,230	2,280		
				125ksi	5,960	6,410	6,850	2,370		
					140ksi	6,500	6,990	7,480	2,470	
				80ksi	5,180	5,570	5,960	2,170		
		0.476	Chrome	85ksi	5,420	5,830	6,230	2,220		
			≥9%CR	95ksi	5,890	6,330	6,770	2,290		
				110ksi	6,600	7,100	7,590	2,430		
				125ksi	7,300	7,850	8,400	2,540		
			0.476	0.476		55ksi	4,570	4,910	5,260	2,570
3 1⁄2	15.50					80ksi	5,750	6,180	6,610	2,780
					85ksi	5,990	6,440	6,890	2,830	
			Carbon	90ksi	6,220	6,690	7,150	2,870		
				95ksi	6,460	6,940	7,430	2,900		
				110ksi	7,170	7,710	8,250	3,040		
				125ksi	7,870	8,460	9,050	3,150		
				140ksi	8,580	9,220	9,870	3,270		
				80ksi	2,430	2,610	2,790	1,090		
				Chrome	85ksi	2,530	2,720	2,910	1,100	
			≥9%CB	95ksi	2,740	2,950	3,150	1,140		
				110ksi	3,060	3,290	3,520	1,200		
				125ksi	3,380	3,630	3,890	1,250		
				55ksi	2,200	2,370	2,530	1,320		
4	9.50	0.226		80ksi	2,720	2,920	3,130	1,400		
				85ksi	2,830	3,040	3,250	1,420		
			Carbon	90ksi	2,940	3,160	3,380	1,450		
			Garbon	95ksi	3,040	3,270	3,500	1,460		
				110ksi	3,360	3,610	3,860	1,520		
				125ksi	3,680	3,960	4,230	1,580		
				140ksi	3,990	4,290	4,590	1,620		
				80ksi	2,950	3,170	3,390	1,240		
			Chromo	85ksi	3,080	3,310	3,540	1,260		
			> 9%CB	95ksi	3,350	3,600	3,850	1,310		
				110ksi	3,750	4,030	4,310	1,380		
				125ksi	4,150	4,460	4,770	1,450		
				55ksi	2,610	2,810	3,000	1,490		
4	10.70	0.262		80ksi	3,280	3,530	3,770	1,600		
				85ksi	3,410	3,670	3,920	1,620		
			Carbon	90ksi	3,540	3,810	4,070	1,640		
				95ksi	3,680	3,960	4,230	1,670		
				110ksi	4,080	4,390	4,690	1,740		
				125ksi	4,480	4,820	5,150	1,810		
				140ksi	4.880	5.250	5 610	1 880		

		Pipe			Field To	rque (ft-lb)	/ APImod	(FF=1.0)	
Size	Weight	Wall	Madaulal	Quarte	Minimum	Optimum	Maximum	Maximur	
(INCN)	(ppt)	(INCN)	wateriai	Grade	Iorque	Iorque	Iorque	Snouide	
				80KSI	3,840	4,130	4,420	1,00	
			Chrome	85KSI	4,010	4,310	4,610	1,69	
			≥9%CR	95KSI	4,350	4,680	5,000	1,75	
				110ksi	4,870	5,240	5,600	1,85	
				125ksi	5,380	5,780	6,190	1,92	
				55KSI	3,420	3,680	3,930	1,98	
4	13.20	0.330		80KSI	4,280	4,600	4,920	2,13	
				85KSI	4,450	4,780	5,120	2,10	
			Carbon	90KSI	4,620	4,970	5,310	2,19	
				95KSI	4,790	5,150	5,510	2,22	
				10Ekai	5,310	5,710	6,110	2,32	
				120KSI	5,620	6,200	0,090	2,40	
				T40KSI	0,340	0,020	7,290	2,50	
				55KSI	2,470	2,660	2,840	1,03	
				80KSI	2,990	3,210	3,440	1,/1	
			Chrome	85KSI	3,090	3,320	3,550	1,73	
4 1⁄2	10.50	0.224	≥9%CR	90KSI	3,200	3,440	3,680	1,75	
			Carbon	95KSI	3,300	3,550	3,800	1,//	
			Garbon	105Let	3,010	3,000	4,150	1,02	
					125KSI	3,920	4,210	4,510	1,80
				140KSI	4,240	4,560	4,880	1,93	
				55KSI	2,820	3,030	3,240	1,79	
			250 Chrome ≥ 9%CR and Carbon	80KSI	3,450	3,710	3,970	1,90	
				85KSI	3,580	3,850	4,120	1,93	
4 1⁄2	11.60	0.250		90KSI	3,700	3,980	4,260	1,95	
				95KSI	3,830	4,120	4,400	1,97	
			Garbon	10Ekai	4,200	4,520	4,030	2,03	
					120KSI	4,360	4,920	5,270	2,09
				140KSI	4,900	2,330	2,700	2,17	
				20koi	2 0 4 0	3,300	3,390	1,90	
				00KSI 05koj	2,040	4,130	4,420	2,00	
			Chrome	00koi	3,900	4,200	4,300	2,00	
4 1⁄2	12.60	0.271	2 9%00n	05kci	4,120	4,430	4,740	2,10	
			Carbon	110kci	4,270	5,050	5 /10	2,13	
				125kci	5 120	5,000	5,410	2,20	
				1/0kci	5 560	5.080	6 300	2,21	
				55kei	3 380	3,500	3 800	2,00	
				80kei	/ 100	4 500	1 820	2,03	
				85kei	4,130	4,500	5,000	2,10	
				90ksi	4 510	4,000	5,000	2,21	
4 1⁄2	13.50	0.290	and	05kei	4,510	5 020	5 370	2,24	
			Carbon	110kei	5 160	5 550	5,370	2,20	
				12540	5.640	6,060	6,400	2,30	
				140kei	6 120	6 580	7040	2,43	
				55ksi	4 110	4 420	4 730	2,52	
				80kei	5 170	5 560	5 050	2,52	
			Chrom	85kei	5 300	5 700	6 200	2,50	
	15.10			QOkei	5,590	6.020	6 1 10	2,54	
4 1⁄2	/	0.337	and	95kei	5 810	6 250	6 6 8 0	2,50	
	15.20	5.20	0.337 and Carb	and Carbon	110kei	6.450	6 030	7/20	2,02
					12560	7000	7620	8 150	2,12
				140kci	7,090	8 200	0,130	2,04	
			l	I 14UKSI	1,120	0,300	0,880	2,95	

		Pipe			Field Torque (ft-lb) / APImod (FF=1.			(FF=1.0)
Size (inch)	Weight (ppf)	Body Wall (inch)	Material	Grade	Minimum Toraue	Optimum Toraue	Maximum Torque	Maximum Shoulder
				55ksi	5,270	5,670	6,060	2,760
				80ksi	6,740	7,250	7,750	3,010
			Chrome	85ksi	7,040	7,570	8,100	3,070
			≥9%CR	90ksi	7,330	7,880	8,430	3,110
4 1⁄2	18.90	0.430	and	95ksi	7,620	8,190	8,760	3,160
			Carbon	110ksi	8,510	9,150	9,790	3,330
				125ksi	9,390	10,090	10,800	3,470
				140ksi	10,270	11,040	11,810	3,630
				55ksi	6,080	6,540	6,990	3,030
				80ksi	7,860	8,450	9,040	3,350
			Chrome	85ksi	8,210	8,830	9,440	3,410
114	21 50	0 500	≥9%CR	90ksi	8,560	9,200	9,840	3,460
4 72	21.00	0.500	and	95ksi	8,920	9,590	10,260	3,530
			Carbon	110ksi	9,980	10,730	11,480	3,720
				125ksi	11,040	11,870	12,700	3,900
				140ksi	12,110	13,020	13,930	4,090
				55ksi	6,760	7,270	7,770	3,250
		0.560	Chrome ≥9%CR and Carbon	80ksi	8,790	9,450	10,110	3,610
				85ksi	9,190	9,880	10,570	3,670
1 1/2	22 70			90ksi	9,600	10,320	11,040	3,750
4 72	23.70			95ksi	10,010	10,760	11,510	3,820
				110ksi	11,220	12,060	12,900	4,020
				125ksi	12,440	13,370	14,310	4,240
				140ksi	13,660	14,680	15,710	4,450
		0.253		55ksi	3,170	3,410	3,650	1,980
				80ksi	3,890	4,180	4,470	2,100
			Chrome	85ksi	4,030	4,330	4,630	2,120
5	13 00		≥9%CR and Carbon	90ksi	4,180	4,490	4,810	2,150
Ŭ	10.00			95ksi	4,320	4,640	4,970	2,170
				110ksi	4,750	5,110	5,460	2,260
				125ksi	5,190	5,580	5,970	2,340
				140ksi	5,620	6,040	6,460	2,410
				55ksi	3,860	4,150	4,440	2,280
				80ksi	4,800	5,160	5,520	2,450
			Chrome	85ksi	4,990	5,360	5,740	2,480
5	15 00	0 296	≥9%CR	90ksi	5,180	5,570	5,960	2,520
Ŭ		0.200	and	95ksi	5,370	5,770	6,180	2,550
			Carbon	110ksi	5,930	6,370	6,820	2,640
				125ksi	6,500	6,990	7,480	2,750
				140ksi	7,070	7,600	8,130	2,850
				55ksi	5,090	5,470	5,850	2,730
				80ksi	6,480	6,970	7,450	2,980
			Chrome	85ksi	6,750	7,260	7,760	3,030
5	18.00	0.362	≥9%CR	90ksi	7,030	7,560	8,080	3,080
			and Carbon	95ksi	7,310	7,860	8,410	3,130
				110ksi	8,140	8,750	9,360	3,270
				125ksi	8,970	9,640	10,320	3,410
				140ksi	9,800	10,540	11,270	3,570

		Pipe			Field To	rque (ft-lb)	/ APImod	(FF=1.0)
Size (inch)	Weight (ppf)	Wall (inch)	Material	Grade	Minimum Torque	Optimum Torque	Maximum Torque	Maximum Shoulder
				55ksi	6,320	6,790	7,270	3,160
				80ksi	8,150	8,760	9,370	3,480
			Chrome	85ksi	8,510	9,150	9,790	3,540
-	04.40	0 407	≥9%CR	90ksi	8,880	9,550	10,210	3,610
5	21.40	0.437	and	95ksi	9,250	9,940	10,640	3,670
			Carbon	110ksi	10,350	11,130	11,900	3,88
				125ksi	11,440	12,300	13,160	4,06
				140ksi	12,540	13,480	14,420	4,25
				55ksi	6,900	7,420	7,940	3,36
				80ksi	8,950	9,620	10,290	3,72
			Chrome	85ksi	9,360	10,060	10,760	3,79
~		0 470	≥9%CR	90ksi	9,770	10,500	11,240	3,86
5	23.20	0.478	and	95ksi	10,180	10,940	11,710	3,93
			Carbon	110ksi	11,410	12,270	13,120	4,16
				125ksi	12,640	13,590	14,540	4,37
				140ksi	13,870	14,910	15,950	4,58
				55ksi	7,210	7,750	8,290	3,46
		0.500	Chrome ≥9%CR and	80ksi	9,380	10,080	10,790	3,85
				85ksi	9,810	10,550	11,280	3,93
-				90ksi	10,240	11,010	11,780	4,00
5	24.10			95ksi	10.670	11.470	12.270	4.07
			Carbon	110ksi	11.970	12.870	13.770	4.30
				125ksi	13,270	14,270	15,260	4,53
				140ksi	14,570	15,660	16,760	4,75
			Chrome ≥ 9%CR and Carbon	55ksi	3,890	4,180	4,470	2,19
				80ksi	4,890	5,260	5,620	2,37
				85ksi	5,090	5,470	5,850	2,40
F 1/	15 50	0.075		90ksi	5,290	5,690	6,080	2,44
5 1/2	15.50	0.275		95ksi	5,490	5,900	6,310	2,47
				110ksi	6,100	6,560	7,020	2,58
				125ksi	6,700	7,200	7,710	2,68
				140ksi	7,300	7,850	8,400	2,79
				55ksi	4,430	4,760	5,090	2,40
				80ksi	5,620	6,040	6,460	2,61
			Chrome	85ksi	5,850	6,290	6,730	2,65
F 1/	17.00	0.004	≥9%CR	90ksi	6,090	6,550	7,000	2,69
5 1/2	17.00	0.304	and	95ksi	6,330	6,800	7,280	2,73
			Carbon	110ksi	7,040	7,570	8,100	2,86
				125ksi	7,760	8,340	8,920	2,98
				140ksi	8,470	9,110	9,740	3,11
				55ksi	5,660	6,080	6,510	2,81
				80ksi	7,310	7,860	8,410	3,10
			Chrome	85ksi	7,640	8,210	8,790	3,15
	00.00		\geq 9%CB	90ksi	7,970	8,570	9,170	3,22
5 1/2	20.00	0.361	and	95ksi	8,310	8,930	9,560	3,28
			Carbon	110ksi	9,300	10,000	10,700	3,46
				125ksi	10,290	11,060	11,830	3,63
				140ksi	11.280	12,130	12,970	3.80

		Pipe			Field To	rque (ft-lb)	/ APImod	(FF=1.0)
Size (inch)	Weight (ppf)	Body Wall (inch)	Material	Grade	Minimum Torque	Optimum Torque	Maximum Torque	Maximum Shoulder
				55ksi	6,620	7,120	7,610	3,150
				80ksi	8,620	9,270	9,910	3,490
			Chrome	85ksi	9,020	9,700	10,370	3,560
F 1/	00.00		≥9%CR	90ksi	9,430	10,140	10,840	3,640
5 1/2	23.00	0.415	and	95ksi	9,830	10,570	11,300	3,710
			Carbon	110ksi	11,030	11,860	12,680	3,910
				125ksi	12,240	13,160	14,080	4,130
				140ksi	13,440	14,450	15,460	4,330
				55ksi	7,900	8,490	9,090	3,560
				80ksi	10,380	11,160	11,940	4,000
			Chrome	85ksi	10,880	11,700	12,510	4,090
5 1/2	26.80	0 500	≥9%CR	90ksi	11,380	12,230	13,090	4,170
J 72	20.00	0.000	and	95ksi	11,880	12,770	13,660	4,260
			Carbon	110ksi	13,370	14,370	15,380	4,520
				125ksi	14,860	15,970	17,090	4,780
				140ksi	16,350	17,580	18,800	5,040
				55ksi	4,820	5,180	5,540	2,670
		0.288	Chrome ≥ 9%CR and Carbon	80ksi	6,090	6,550	7,000	2,890
				85ksi	6,340	6,820	7,290	2,930
65%	20.00			90ksi	6,600	7,100	7,590	2,990
0 /9	20.00			95ksi	6,850	7,360	7,880	3,020
				110ksi	7,610	8,180	8,750	3,150
				125ksi	8,380	9,010	9,640	3,300
				140ksi	9,140	9,830	10,510	3,430
				55ksi	6,340	6,820	7,290	3,250
				80ksi	8,140	8,750	9,360	3,560
			Chrome	85ksi	8,500	9,140	9,780	3,620
6 5/4	24 00	0.352	≥9%CR and Carbon	90ksi	8,860	9,520	10,190	3,680
				95ksi	9,220	9,910	10,600	3,740
				110ksi	10,300	11,070	11,850	3,930
				125ksi	11,380	12,230	13,090	4,120
		ļ		140ksi	12,460	13,390	14,330	4,300
				55ksi	8,470	9,110	9,740	3,890
				80ksi	11,100	11,930	12,770	4,330
			Chrome	85ksi	11,630	12,500	13,370	4,430
6 5⁄9	28.00	0.417	≥9%CR	90ksi	12,160	13,070	13,980	4,520
			and	95ksi	12,690	13,640	14,590	4,620
			Carbon	110ksi	14,270	15,340	16,410	4,890
			125ksi	15,850	17,040	18,230	5,170	
				140ksi	17,440	18,750	20,060	5,450
				55ksi	10,420	11,200	11,980	4,410
				80ksi	13,850	14,890	15,930	5,020
		0 0.475	Chrome	85ksi	14,540	15,630	16,720	5,140
6 %	32.00		≥9%CR	90ksi	15,220	16,360	17,500	5,260
			and	95ksi	15,910	17,100	18,300	5,380
				110ksi	17,960	19,310	20,650	5,740
				125KSi	20,020	21,520	23,020	6,100
				140ksi	22,080	23,740	25,390	6,470

		Pipe			Field To	rque (ft-lb)	/ APImod	(FF=1.0)
Size (inch)	Weight (ppf)	Wall (inch)	Material	Grade	Minimum Torque	Optimum Torque	Maximum Torque	Maximum Shoulder
		· · ·		55ksi	4,870	5,240	5,600	2,580
				80ksi	6,210	6,680	7,140	2,810
			Chrome	85ksi	6,480	6,970	7,450	2,860
-		0.070	≥9%CR	90ksi	6,740	7,250	7,750	2,900
1	20.00	0.272	and	95ksi	7,010	7,540	8,060	2,950
			Carbon	110ksi	7,820	8,410	8,990	3,090
				125ksi	8,620	9,270	9,920	3,230
				140ksi	9,430	10,140	10,840	3,38
				55ksi	6,030	6,480	6,930	3,00
				80ksi	7,780	8,360	8,950	3,30
			Chrome	85ksi	8,130	8,740	9,350	3,37
7		0.047	≥9%CR	90ksi	8,490	9,130	9,760	3,44
1	23.00	0.317	and	95ksi	8,840	9,500	10,170	3,50
			Carbon	110ksi	9,890	10,630	11,370	3,68
				125ksi	10,940	11,760	12,580	3,86
				140ksi	12,000	12,900	13,800	4,05
				55ksi	7,290	7,840	8,380	3,42
			2 Chrome ≥ 9%CR and Carbon	80ksi	9,520	10,230	10,950	3,81
		0.362		85ksi	9,970	10,720	11,470	3,89
-				90ksi	10,410	11,190	11,970	3,96
1	26.00			95ksi	10,860	11,670	12,490	4,04
				110ksi	12,200	13,120	14,030	4,29
				125ksi	13,540	14,560	15,570	4,52
				140ksi	14,880	16,000	17,110	4,76
			Chrome	55ksi	8,970	9,640	10,320	3,89
				80ksi	11,880	12,770	13,660	4,40
		0.408		85ksi	12,460	13,390	14,330	4,50
-	00.00		≥9%CR	90ksi	13,040	14,020	15,000	4,60
1	29.00		and	95ksi	13,620	14,640	15,660	4,70
			Carbon	110ksi	15,370	16,520	17,680	5,01
			Guibon	125ksi	17,110	18,390	19,680	5,31
				140ksi	18,860	20,270	21,690	5,62
				55ksi	10,440	11,220	12,010	4,30
				80ksi	13,940	14,990	16,030	4,92
			Chrome	85ksi	14,640	15,740	16,840	5,04
-		0.450	≥9%CR	90ksi	15,340	16,490	17,640	5,16
1	32.00	0.453	and	95ksi	16,040	17,240	18,450	5,28
			Carbon	110ksi	18,130	19,490	20,850	5,64
				125ksi	20,230	21,750	23,260	6,01
				140ksi	22,330	24,000	25,680	6,38
	1			55ksi	11,560	12,430	13,290	4,64
				80ksi	15,490	16,650	17,810	5,32
			Chrome	85ksi	16,280	17,500	18,720	5,46
-	05.00	0.400	498 Chrome ≥ 9%CR and Carbon	90ksi	17,070	18,350	19,630	5,60
1	35.00	0.498		95ksi	17,850	19,190	20,530	5,73
				110ksi	20,210	21,730	23,240	6,15
				125ksi	22,570	24,260	25,960	6,55
				140ksi	24.940	26.810	28 680	6.98

		Pipe			Field To	rque (ft-lb)	/ APImod	(FF=1.0)
Size (inch)	Weight (ppf)	Body Wall (inch)	Material	Grade	Minimum Torque	Optimum Torque	Maximum Torque	Maximum Shoulder
				55ksi	12,560	13,500	14,440	4,920
				80ksi	16,900	18,170	19,440	5,680
			Chrome	85ksi	17,770	19,100	20,440	5,830
-	00.00	0 5 40	≥9%CR	90ksi	18,630	20,030	21,420	5,980
'	38.00	0.540	and	95ksi	19,500	20,960	22,430	6,130
			Carbon	110ksi	22,100	23,760	25,420	6,590
				125ksi	24,700	26,550	28,410	7,040
				140ksi	27,300	29,350	31,400	7,500
				55ksi	6,190	6,650	7,120	3,370
				80ksi	7,850	8,440	9,030	3,670
			Chrome	85ksi	8,180	8,790	9,410	3,720
7.5%	26.40	0 3 2 8	≥9%CR	90ksi	8,510	9,150	9,790	3,780
1 78	20.40	0.520	and	95ksi	8,840	9,500	10,170	3,830
			Carbon	110ksi	9,840	10,580	11,320	4,020
				125ksi	10,830	11,640	12,450	4,180
				140ksi	11,830	12,720	13,600	4,370
				55ksi	7,520	8,080	8,650	3,850
		0.375	Chrome ≥9%CR and Carbon	80ksi	9,660	10,380	11,110	4,230
				85ksi	10,090	10,850	11,600	4,310
75%	20 70			90ksi	10,510	11,300	12,090	4,380
1 /0	23.10			95ksi	10,940	11,760	12,580	4,460
				110ksi	12,220	13,140	14,050	4,680
				125ksi	13,500	14,510	15,530	4,900
				140ksi	14,790	15,900	17,010	5,140
				55ksi	9,540	10,260	10,970	4,480
				80ksi	12,460	13,390	14,330	4,980
			Chrome	85ksi	13,040	14,020	15,000	5,090
7 5/8	33 70	0.430	≥9%CR and Carbon	90ksi	13,630	14,650	15,670	5,190
. / .	000			95ksi	14,210	15,280	16,340	5,300
				110ksi	15,960	17,160	18,350	5,600
				125ksi	17,710	19,040	20,370	5,900
		ļ		140ksi	19,470	20,930	22,390	6,220
				55ksi	12,230	13,150	14,060	5,230
				80ksi	16,230	17,450	18,660	5,940
			Chrome	85ksi	17,030	18,310	19,580	6,080
7 5/8	39.00	0.500	≥9%CR	90ksi	17,830	19,170	20,500	6,220
			Carbon	95ksi	18,630	20,030	21,420	6,360
			Garbon	110ksi	21,030	22,610	24,180	6,780
				125ksi	23,430	25,180	26,940	/,190
<u> </u>				140ksi	25,830	27,770	29,700	7,620
				D5KSI	14,240	15,310	16,380	5,820
				BUKSI	19,030	20,460	21,880	6,650
		0.562	Chrome	85KSI	19,990	21,490	22,990	6,820
7 5⁄8	42.80		≥9%CR	9UKSI	20,950	22,520	24,090	6,980
			Carbon	95KSI	21,910	23,550	25,200	7,150
					24,780	20,640	28,500	7,650
				IZ5KSI	27,660	29,730	31,810	ö,150
				14UKSİ	30,540	32,830	35,120	8,660

		Dedu			Field To	rque (ft-lb)	/ APImod	(FF=1.0)
Size (inch)	Weight (ppf)	Wall (inch)	Material	Grade	Minimum Torque	Optimum Torque	Maximum Torque	Maximum Shoulder
(mon)	(ppr)	(mon)	matorial	55ksi	15 090	16 220	17 350	6 070
				80ksi	20 210	21730	23 240	6,960
			Chromo	85ksi	21 240	22 830	24 430	7140
			> 9% CB	90ksi	22 260	23,930	25,600	7 320
7 5⁄8	45.30	0.595	and	95ksi	23,290	25.040	26,780	7.500
			Carbon	110ksi	26.370	28.350	30.330	8.040
				125ksi	29,440	31,650	33,860	8,580
				140ksi	32,520	34,960	37,400	9,120
				55ksi	6,580	7,070	7,570	3,680
				80ksi	8,290	8,910	9,530	3,980
1			Chrome	85ksi	8,630	9,280	9,920	4,040
			≥9%CR	90ksi	8,980	9,650	10,330	4,100
8%	32.00	0.352	and	95ksi	9,320	10,020	10,720	4,160
			Carbon	110ksi	10,350	11,130	11,900	4,35
				125ksi	11,380	12,230	13,090	4,52
				140ksi	12,400	13,330	14,260	4,69
				55ksi	8,060	8,660	9,270	4,20
			Chrome ≥9%CR and Carbon	80ksi	10,310	11,080	11,860	4,60
				85ksi	10,760	11,570	12,370	4,68
	36.00	0.400		90ksi	11,210	12,050	12,890	4,76
8 %				95ksi	11.660	12,530	13.410	4.83
				110ksi	13.010	13.990	14.960	5.08
1				125ksi	14.360	15.440	16.510	5.31
				140ksi	15,710	16,890	18,070	5,55
			0 Chrome ≥9%CR and Carbon	55ksi	9,840	10,580	11,320	4,77
				80ksi	12,770	13,730	14,690	5,28
				85ksi	13,360	14,360	15,360	5,38
		0.450		90ksi	13,950	15,000	16,040	5,49
8 %	40.00			95ksi	14,540	15,630	16,720	5,59
				110ksi	16,300	17,520	18,750	5,90
				125ksi	18,060	19,410	20,770	6,20
				140ksi	19,820	21,310	22,790	6,52
				55ksi	11,690	12,570	13,440	5,31
				80ksi	15,360	16,510	17,660	5,96
			Chrome	85ksi	16,090	17,300	18,500	6,09
0.5/	44.00	0 500	≥9%CR	90ksi	16,820	18,080	19,340	6,21
8 %	44.00	0.500	and	95ksi	17,560	18,880	20,190	6,35
			Carbon	110ksi	19,750	21,230	22,710	6,72
				125ksi	21,950	23,600	25,240	7,11
				140ksi	24,150	25,960	27,770	7,49
				55ksi	13,880	14,920	15,960	5,93
				80ksi	18,420	19,800	21,180	6,72
			Chrome	85ksi	19,330	20,780	22,230	6,88
0.5/	40.00	0.553	≥9%CR	90ksi	20,240	21,760	23,280	7,04
0 %8	49.00	0.00/	and	95ksi	21,150	22,740	24,320	7,20
			Carbon	110ksi	23,870	25,660	27,450	7,67
				125ksi	26,600	28,600	30,590	8,16
				140ksi	29,320	31,520	33,720	8,63

		Pipe			Field To	rque (ft-lb)	/ APImod	(FF=1.0)
Size (inch)	Weight (ppf)	Body Wall (inch)	Material	Grade	Minimum Torque	Optimum Torque	Maximum Torque	Maximum Shoulder
				55ksi	6,780	7,290	7,800	3,710
				80ksi	8,590	9,230	9,880	4,030
			Chrome	85ksi	8,950	9,620	10,290	4,090
0.5/	20.00	0.050	≥9%CR	90ksi	9,310	10,010	10,710	4,160
9 %8	30.00	0.352	and	95ksi	9,670	10,400	11,120	4,220
			Carbon	110ksi	10,760	11,570	12,370	4,420
				125ksi	11,840	12,730	13,620	4,600
				140ksi	12,920	13,890	14,860	4,790
				55ksi	7,960	8,560	9,150	4,160
				80ksi	10,180	10,940	11,710	4,550
			Chrome	85ksi	10,630	11,430	12,220	4,640
0.5%	10 00	0 305	≥9%CR	90ksi	11,070	11,900	12,730	4,710
578	40.00	0.000	and	95ksi	11,510	12,370	13,240	4,780
			Carbon	110ksi	12,850	13,810	14,780	5,020
				125ksi	14,180	15,240	16,310	5,250
				140ksi	15,510	16,670	17,840	5,480
				55ksi	9,100	9,780	10,470	4,560
		0.435	Chrome ≥9%CR and Carbon	80ksi	11,740	12,620	13,500	5,030
				85ksi	12,260	13,180	14,100	5,120
Q 5/6	43 50			90ksi	12,790	13,750	14,710	5,210
5 /0	+0.00			95ksi	13,320	14,320	15,320	5,310
				110ksi	14,900	16,020	17,140	5,590
				125ksi	16,480	17,720	18,950	5,860
			ļ	140ksi	18,060	19,410	20,770	6,130
				55ksi	10,990	11,810	12,640	5,070
				80ksi	14,390	15,470	16,550	5,670
			Chrome	85ksi	15,070	16,200	17,330	5,780
9 5/8	47.00	0.472	≥9%CR	90ksi	15,750	16,930	18,110	5,900
			and Carbon	95ksi	16,430	17,660	18,890	6,020
				110ksi	18,480	19,870	21,250	6,390
				125ksi	20,520	22,060	23,600	6,740
				140ksi	22,560	24,250	25,940	7,090
				55ksi	13,290	14,290	15,280	5,790
				80KSI	17,580	18,900	20,220	6,530
			Chrome	85KSI	18,440	19,820	21,210	6,680
9 5/8	53.50	0.545	≥9%CR	90ksi	19,300	20,750	22,200	6,830
			Carbon	95KSI	20,160	21,670	23,180	6,980
			Garbon	110ksi	22,730	24,430	26,140	7,420
				125KSi	25,310	27,210	29,110	7,880
				I4UKSI	27,890	29,980	32,070	8,330
				DOKSI	14,930	10,050		0,200
				OF LOC	19,870	21,360	22,850	7,120
			Chrome	001	20,860	22,420	23,990	7,290
9 5⁄8	58.40	0.595	≥9%CR	9UKSI	21,850	23,490	25,130	7,470
			Carbon	110kc	22,840	24,550	20,270	1,030
				125kei	20,010	21,100	23,000	0,100
				14046	20,110	24 120	26 500	0,070
				I 14UKSI	31,740	34,120	1 30,300	9,190

		Pipe			Field To	rque (ft-lb)	/ APImod	(FF=1.0)
Size (inch)	Weight (ppf)	Body Wall (inch)	Material	Grade	Minimum Torque	Optimum Torque	Maximum Torque	Maximum Shoulder
			ĺ	55ksi	6,430	6,910	7,390	3,640
				80ksi	8,090	8,700	9,300	3,940
		Chrome	85ksi	8,420	9,050	9,680	3,990	
10.27	40 50	0.050	≥9%CR	90ksi	8,750	9,410	10,060	4,050
10 %	40.50	0.350	and	95ksi	9,080	9,760	10,440	4,110
			Carbon	110ksi	10,070	10,830	11,580	4,280
				125ksi	11,060	11,890	12,720	4,450
				140ksi	12,050	12,950	13,860	4,620
				55ksi	7,840	8,430	9,020	4,170
				80ksi	9,990	10,740	11,490	4,550
			Chrome	85ksi	10,420	11,200	11,980	4,620
10.27	45 50	0 400	≥9%CR	90ksi	10,850	11,660	12,480	4,700
10 %	45.50	0.400	and	95ksi	11,280	12,130	12,970	4,780
			Carbon	110ksi	12,570	13,510	14,460	5,000
				125ksi	13,860	14,900	15,940	5,23
				140ksi	15,140	16,280	17,410	5,45
				55ksi	9,190	9,880	10,570	4,65
		0.450	Chrome ≥9%CR and Carbon	80ksi	11,830	12,720	13,600	5,12
				85ksi	12,360	13,290	14,210	5,21
10.3/	51.00			90ksi	12,890	13,860	14,820	5,31
10 %4				95ksi	13,420	14,430	15,430	5,40
				110ksi	15,000	16,130	17,250	5,68
				125ksi	16,580	17,820	19,070	5,94
				140ksi	18,170	19,530	20,900	6,23
				55ksi	10,460	11,240	12,030	5,08
				80ksi	13,570	14,590	15,610	5,63
			Chrome	85ksi	14,190	15,250	16,320	5,73
10 3/	55 50	0.495	≥9%CR and Carbon	90ksi	14,810	15,920	17,030	5,840
10 74	55.50			95ksi	15,440	16,600	17,760	5,96
				110ksi	17,300	18,600	19,900	6,28
				125ksi	19,170	20,610	22,050	6,61
				140ksi	21,040	22,620	24,200	6,94
				55ksi	13,080	14,060	15,040	5,74
				80ksi	17,280	18,580	19,870	6,48
			Chrome	85ksi	18,120	19,480	20,840	6,63
10 3/	60 70	0.545	≥9%CR	90ksi	18,960	20,380	21,800	6,77
10 74	00.70	0.545	and	95ksi	19,800	21,290	22,770	6,92
			Carbon	110ksi	22,320	23,990	25,670	7,36
				125ksi	24,840	26,700	28,570	7,80
				140ksi	27,360	29,410	31,460	8,24
				55ksi	14,630	15,730	16,820	6,210
				80ksi	19,440	20,900	22,360	7,050
			Chrome	85ksi	20,400	21,930	23,460	7,21
10.37	65 70	0 505	≥9%CR	90ksi	21,360	22,960	24,560	7,37
IU %4	05.70	0.595	and Carbon	95ksi	22,330	24,000	25,680	7,55
				110ksi	25,210	27,100	28,990	8,05
				125ksi	28,100	30,210	32,320	8,560
				140ksi	30,990	33 310	35 640	9 070

Fox Make-up Torques

Bite (inch) Weigh (ppf) Wall (inch) Material (ppf) Grade Material (inch) Minimu Grade Optimul Torque Maximum Maximum 10%4 Fortal Material Grade Torque Torque Maximum 10%4 Fortal Fortal Size 22,060 23,710 25,370 7,760 10%4 Fortal Fortal Size 24,270 26,090 27,910 8,340 20%51 25,380 27,280 29,190 8,340 104% 110%si 28,700 30,610 8,910 12%51 32,030 34,430 36,830 9,500 10,080 5,556 35,550 32,040 40,650 10,080
10 ¾ 73.20 0.672 55ksi 16,520 17,760 19,000 6,790 80ksi 22,060 23,710 25,370 7,760 85ksi 23,160 24,900 26,630 7,950 99%CR 90ksi 24,270 26,090 27,910 8,140 95ksi 25,380 27,280 29,190 8,340 110ksi 28,700 30,650 33,010 8,910 125ksi 32,030 34,430 36,830 9,500 140ksi 35,350 38,000 40,650 10,080
10 ⅔ 73.20 0.672 80.67
$10\% \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
10 ¾ 73.20 0.672 ≥9%CR 90ksi 24,270 26,090 27,910 8,140 and 95ksi 25,380 27,280 29,190 8,340 110ksi 28,700 30,850 33,010 8,910 125ksi 32,030 34,430 36,830 9,500 140ksi 35,350 38,000 40,650 10,080
10 / 4 15.20 0.072 and Carbon 95ksi 25,380 27,280 29,190 8,340 110ksi 28,700 30,0850 33,010 8,910 125ksi 32,030 34,430 36,830 9,500 140ksi 35,350 38,000 40,650 10,080
Carbon 110ksi 28,700 30,850 33,010 8,910 125ksi 32,030 34,430 36,830 9,500 140ksi 35,550 38,000 40,650 10,080 55ksi 7,200 7,840 8,380 3,040
125ksi 32,030 34,430 36,830 9,500 140ksi 35,350 38,000 40,650 10,080 55ksi 7,200 7,840 8,380 2,040
140ksi 35,350 38,000 40,650 10,080
55ksi 7200 7810 8380 2010
80ksi 9,260 9,950 10,650 4,280
Chrome 85ksi 9,650 10,370 11,100 4,340
$11\frac{3}{4700}$ 0.375 $\geq 9\%$ CR 90ksi 10,050 10,800 11,560 4,420
and 95ksi 10,440 11,220 12,010 4,490
Carbon 110ksi 11,620 12,490 13,360 4,690
125ksi 12,800 13,760 14,720 4,900
140ksi 13,990 15,040 16,090 5,120
55ksi 8,940 9,610 10,280 4,540
80ksi 11,510 12,370 13,240 4,990
Chrome 85ksi 12,020 12,920 13,820 5,080
11_{34} 54 00 0 435 \geq 9%CR 90ksi 12,530 13,470 14,410 5,170
and 95ksi 13,050 14,030 15,010 5,270
Carbon 110ksi 14,580 15,670 16,770 5,520
125ksi 16,120 17,330 18,540 5,800
140ksi 17,660 18,980 20,310 6,060
55ksi 11,340 12,190 13,040 5,210
80ksi 14,860 15,970 17,090 5,820
Chrome 85KSI 15,560 16,730 17,890 5,950
$11\frac{34}{60.00}$ 0.489 $\geq 9\%$ CR 90KSI 16,270 17,490 18,710 6,080
and 95KSI 16,970 18,240 19,520 6,190
125KSI 21,200 22,790 24,380 6,940
140KSI 23,310 25,060 26,810 7,300
55KSI 12,720 13,670 14,630 5,630
00KSI 10,700 10,040 19,300 0,330
Chrome 05K51 17,590 10,910 20,250 0,490
11 ³ / ₄ 65.00 0.534 29% CR 90K31 10,400 19,780 21,100 0,050
Garbon 110/ci 21 650 22 270 24 000 7 200
10KSI 21,050 23,270 24,900 7,200
55ksi 7250 7700 8340 2060
$ 13\% 54.50 0.380 $ and $ 05k_{51} 5.500 10,710 11,450 4,440 $
Carbon 110ksi 11 510 12 370 13 240 4 700
125ksi 12 670 13 620 14 570 4 910
140ksi 13 830 14 870 15 900 5 110

It is recommended to check the following website for up to date torque information: www.jfetc.com

		Pipe			Field Torque (ft-lb) / APImod (FF=1.0)			
Size (inch)	Weight (ppf)	Body Wall (inch)	Material	Grade	Minimum Torque	Optimum Torque	Maximum Torque	Maximum Shoulder
			ĺ	55ksi	8,820	9,480	10,140	4,500
				80ksi	11,330	12,180	13,030	4,930
			Chrome	85ksi	11,830	12,720	13,600	5,020
10.2/	01.00	0 400	≥9%CR	90ksi	12,340	13,270	14,190	5,120
13 %9	61.00	0.430	and	95ksi	12,840	13,800	14,770	5,200
			Carbon	110ksi	14,350	15,430	16,500	5,470
				125ksi	15,860	17,050	18,240	5,730
				140ksi	17,370	18,670	19,980	5,990
				55ksi	10,220	10,990	11,750	4,980
				80ksi	13,250	14,240	15,240	5,500
			Chrome	85ksi	13,860	14,900	15,940	5,610
10.3/	60.00	0 400	≥9%CR	90ksi	14,470	15,560	16,640	5,730
13 %9	00.00	0.400	and	95ksi	15,070	16,200	17,330	5,820
			Carbon	110ksi	16,890	18,160	19,420	6,140
				125ksi	18,710	20,110	21,520	6,460
				140ksi	20,530	22,070	23,610	6,780
				55ksi	11,200	12,040	12,880	5,290
				80ksi	14,610	15,710	16,800	5,900
			Chrome	85ksi	15,290	16,440	17,580	6,010
10.3/	72.00	0.544	≥9%CR	90ksi	15,970	17,170	18,370	6,130
13 %9		0.514	and	95ksi	16,650	17,900	19,150	6,250
			Carbon	110ksi	18,700	20,100	21,510	6,610
				125ksi	20,740	22,300	23,850	6,970
				140ksi	22,790	24,500	26,210	7,330

21 Special Clearance Coupling OD Dimensions

It is recommended to use slip type elevators for special clearance OD couplings.

21.1 JFETIGER

JFETIGER Special Clearance Coupling OD's							
Size (inch)	Weight (lb/ft)	Wall Thickness (inch)	SC80 (inch)	SC90 (inch)	Tolerance (inch)		
	23.00	0.317	7.602	7.658			
	26.00	0.362	7.651	7.714			
7	29.00	0.408	7.676	7.746			
1	32.00	0.453	7.676	7.753			
	35.00	0.498	7.730	7.814			
	38.00	0.540	7.766	7.856			
	29.70	0.375	8.212	8.278			
	33.70	0.430	8.269	8.343			
75/	39.00	0.500	8.331	8.416			
1 %8	42.80	0.562	8.385	8.479			
	45.30	0.595	8.430	8.528			
	47.10	0.625	8.471	g OD's SC90 (inch) 7.658 7.714 7.753 7.814 7.856 8.278 8.343 8.416 8.479 8.528 8.574 9.485 9.477 9.577 9.641 9.793 9.794 9.816 10.415 10.408 10.556 10.578 10.556 10.578 10.958 10.952 10.951 10.952 10.951 10.954			
	40.00	0.450	9.407	9.485			
	44.00	0.500	9.391	9.477			
	49.00	0.557	9.482	9.577			
0.5/	52.00	0.595	9.542	9.641			
0 %8	54.00	0.625	9.588	9.691	+ 0.020 / - 0		
	57.40	0.656	9.635	9.743			
	58.70	0.687	9.682	9.794			
	59.20	0.700	9.702	9.816			
	40.00	0.395	10.345	10.415			
	43.50	0.435	10.331	10.408			
0.5/	47.00	0.472	10.354	10.438			
9 %8	53.50	0.545	10.437	10.531			
	58.40	0.595	10.453	10.556]		
	59.40	0.609	10.473	10.578]		
	62.80	0.625	10.852	10.958			
	65.30	0.650	10.844	10.954			
	66.40	0.661	10.841	10.952			
9 7⁄8	66.90	0.668	10.838	10.951			
	67.50	0.678	10.835	10.950			
	68.00	0.694	10.830	10.947			
	68.90	0.700	10.828	10.946			

21.2 FOX

FOX Special Clearance Coupling OD's							
Size (inch)	Tolerance (inch)						
4 1/2	4.882						
5	5.391						
5 1⁄2	5.891						
6 5⁄8	7.000						
7	7.380						
7 5⁄8	8.000	+ 0.020 / - 0					
8 5⁄8	9.120						
9 5⁄8	10.100						
10 3⁄4	11.266						
11 3⁄4	12.268						

21.3 JFEBEAR

JFEBEAR Special Clearance Coupling OD's						
Size (inch)	Weight (lb/ft)	Wall Thickness (inch)	SC80 (inch)	SC90 (inch)	Tolerance (inch)	
	4.60	0.190	2.621	2.652		
0.27	5.80	0.254	2.695	2.735		
2 %	6.60	JFEBERK Special Clearance Coupling UU's Int Wall Thickness (inch) SC80 (inch) SC90 (inch) 00 0.190 2.621 2.652 00 0.254 2.695 2.735 00 0.295 2.739 2.784 5 0.336 2.781 2.830 00 0.217 3.140 3.176 00 0.276 3.211 3.255 0.308 3.247 3.295 00 0.308 3.247 3.295 01 0.308 3.247 3.295 01 0.308 3.247 3.295 01 0.308 3.247 3.295 01 0.308 3.247 3.836 01 0.216 3.743 3.781 01 0.254 3.792 3.836 02 0.289 3.836 3.884 01 0.430 3.996 4.061 02 0.430 3.996 4.061	2.784			
	7.35	0.336	2.781	2.830		
	6.40	0.217	3.140	3.176		
	7.80	0.276	3.211	3.255		
0.7/	8.60	0.308	3.247	3.295		
Z 1/8	9.35	0.340	3.282	3.334		
	10.50	0.392	3.336	3.394		
	11.50	0.440	3.383	3.445		
	7.70	0.216	3.743	3.781		
	9.20	0.254	3.792	3.836		
	10.20	0.289	3.836	3.884		
3 1⁄2	12.70	0.375	3.936	3.995		
	14.30	0.430	3.996	4.061		
	15.50	0.476	4.043	4.114		
	17.00	0.530	4.096	4.172		
	9.50	0.226	4.241	4.281		
	10.70	0.262	4.288	4.334	+ 0.020 / - 0	
4	11.60	0.286	4.319	4.368		
4	13.20	0.330	4.374	4.429		
	14.80	0.380	4.434	4.495		
	16.10	0.415	4.474	4.540		
	11.60	0.250	4.778	4.822		
	12.60	0.271	4.806	4.853		
	13.50	0.290	4.831	4.881		
4.16	15.20	0.337	4.891	4.948		
4 72	17.00	0.380	4.944	5.007		
	18.90	0.430	5.003	5.073		
	21.50	0.500	5.082	5.160		
	23.70	0.560	5.147	5.232		
	13.00	0.253	5.273	5.318		
	15.00	0.296	5.331	5.383		
5	18.00	0.362	5.416	5.478		
5	21.40	0.437	5.508	5.580		
	23.20	0.478	5.557	5.634		
	24.10	0.500	5.582	5.662		

JFEBEAR Special Clearance Coupling OD's						
Size (inch)	Weight (lb/ft)	Wall Thickness (inch)	SC80 (inch)	SC90 (inch)	Tolerance (inch)	
	15.50	0.275	5.806	5.855		
	17.00	0.304	5.845	5.899		
E 1/	20.00	0.361	5.920	5.982		
J 1/2	23.00	0.415	5.988	6.058		
	26.00	0.476	6.063	6.141		
	26.80	0.500	6.091	6.173		
6	24.10	0.400	6.472	6.541		
	20.00	0.288	6.942	6.995		
654	24.00	0.352	7.030	7.092		
0 %8	28.00	0.417	7.116	7.188		
	32.00	0.475	7.190	GDUs SC00 (inch) 5.855 5.982 6.058 6.141 6.173 6.595 7.022 7.188 7.271 7.404 7.473 7.542 7.672 7.730 7.845 7.925 8.111 8.193 8.296 8.384 8.296 9.388 10.211 9.388 10.214 10.214 10.214 10.214 10.214 10.214		
	23.00	0.317	7.347	7.404		
	26.00	0.362	7.409	7.473		
	29.00	0.408	7.470	7.542		
7	32.00	0.453	7.529	7.607		
1	35.00	0.498	7.587	7.672		
	38.00	0.540	7.639	7.730		
	42.70	0.625	7.743	7.845		
	46.40	0.687	7.815	Lincarj 5.855 5.899 5.982 6.058 6.141 6.173 6.541 6.995 7.092 7.188 7.271 7.404 7.473 7.542 7.607 7.672 7.730 7.845 7.925 8.111 8.193 8.296 8.384 8.429 8.470 8.556 9.080 9.155 9.231 9.305 9.388 10.084 10.151 10.214 10.270 10.380		
	29.70	0.375	8.043	8.111	+ 0.020 / - 0	
	33.70	0.430	8.118	8.193		
7.6/	39.00	0.500	8.209	8.296		
1 %8	42.80	0.562	8.288	8.384		
	45.30	0.595	8.329	8.429		
	47.10	0.625	8.366	8.470		
7 3⁄4	46.10	0.595	8.456	8.556		
	32.00	0.352	9.016	9.080		
	36.00	0.400	9.082	9.155		
8 5⁄8	40.00	0.450	9.151	9.231		
	44.00	0.500	9.217	9.305		
	49.00	0.557	9.292	9.388		
	36.00	0.352	10.019	10.084		
	40.00	0.395	10.079	10.151		
	43.50	0.435	10.135	10.214		
9 5⁄8	47.00	0.472	10.186	10.270		
	53.50	0.545	10.284	10.380		
	58.40	0.595	10.350	10.453		
	59.40	0.609	10.368	10.473		

21.4 JFELION

	JFELION Special Clearance Coupling OD's							
Size (inch)	Weight (lb/ft)	Wall Thickness (inch)	SC80 (inch)	SC90 (inch)	Tolerance (inch)			
	6.40	0.217	3.203	3.242				
2.7%	7.80	0.276	3.255	3.303				
2 78	Differential Weilt This (ib/ft) Weilt This 6.40 0.27 8.60 0.32 9.35 0.34 9.20 0.25 10.20 0.28 12.70 0.37 14.30 0.43 12.60 0.27 13.50 0.28 12.70 0.37 14.30 0.43 12.60 0.27 13.50 0.22 15.20 0.33 17.00 0.36 17.70 0.43 21.50 0.50 23.70 0.56 15.00 0.22 18.00 0.36 21.40 0.43 21.50 0.27 17.00 0.30 21.40 0.43 21.50 0.27 17.00 0.30 21.40 0.43 22.00 0.36 23.00 0.47 26.00 <td< td=""><td>0.308</td><td>3.295</td><td>3.347</td><td></td></td<>	0.308	3.295	3.347				
	9.35	0.340	3.333	3.389				
	9.20	0.254	3.867	3.913				
	10.20	0.289	3.914	3.966				
3 1/2	12.70	0.375	3.993	4.057				
	14.30	0.430	SC60 SC90 3.203 3.242 3.255 3.303 3.255 3.303 3.255 3.333 3.295 3.347 3.333 3.389 3.867 3.913 3.914 3.966 3.993 4.057 4.058 4.129 4.060 4.153 4.900 4.952 4.912 4.967 4.905 5.016 5.016 5.084 5.040 5.155 5.151 5.236 5.221 5.313 5.434 5.490 5.434 5.490 5.436 5.719 5.663 5.719 5.663 5.749 5.916 5.970 5.959 6.017 6.015 6.082 6.089 6.165 6.154 6.239 6.185 6.273 6.210 6.302 6.250					
	14.80	0.449	4.080	4.153				
	12.60	0.271	4.900	4.952				
	13.50	0.290	4.912	4.967				
	15.20	0.337	4.977	5.039				
1 16	17.00	0.380	5.016	5.084				
4 72	17.70	0.402	5.044	5.116				
	18.90	0.430	5.080	5.155				
	21.50	0.500	5.151	5.236]			
	23.70	0.560	5.221	5.313]			
	15.00	0.296	5.434	5.490]			
	18.00	0.362	5.496	5.563]			
5	21.40	0.437	5.596	5.674]			
5	23.20	0.478	5.636	5.719]			
	24.10	0.500	5.663	5.749]			
	15.50	0.275	5.916	5.970	+ 0.020 / - 0			
	17.00	0.304	5.959	6.017]			
	20.00	0.361	6.015	6.082				
E 1/	23.00	0.415	6.089	6.165				
5 1/2	26.00	0.476	6.154	6.239]			
	26.80	0.500	6.185	6.273				
	28.40	0.530	6.210	6.302				
	29.70	0.562	6.250	6.346				
6	22.80	0.375	6.544	6.614				
0	32.00	0.519	6.712	6.805				
6.068	32.60	0.553	6.770	6.868				
	20.00	0.288	7.072	7.128				
	24.00	0.352	7.122	7.190				
6 5/8	28.00	0.417	7.215	7.294				
	32.00	0.475	7.296	7.383				
	40.20	0.625	7.467	7.576				
	23.00	0.317	7.465	7.527				
	26.00	0.362	7.532	7.601				
	29.00	0.408	7.598	7.676				
7	32.00	0.453	7.642	7.727				
	35.00	0.498	7.705	7.797				
	38.00	0.540	7.749	7.847				
	42.70	0.625	7.861	7.971				

	JFELION Special Clearance Coupling OD's					
	Weight	Wall Thickness	SC80	SC90	Tolerance	
Size (inch)	(lb/ft)	(inch)	(inch)	(inch)	(inch)	
	26.40	0.328	8.115	8.180		
	29.70	0.375	8.186	8.258		
7.5/	33.70	0.430	8.238	8.320		
/ %	35.80	0.465	8.288	8.376		
	39.00	0.500	8.338	8.431		
	42.80	0.562	8.396	8.499		
	36.00	0.400	9.212	9.290		
	40.00	0.450	9.286	9.372		
	44.00	0.500	9.358	9.453		
8 5/8	49.00	0.557	9.403	9.507		
	52.00	0.595	9.456	9.566		
	54.00	0.625	9.472	9.588		
	57.40	0.656	9.515	9.635		
	40.00	0.395	10.203	10.281		
	43.50	0.435	10.263	10.349		
0.5%	47.00	0.472	10.285	10.377		
3 78	53.50	0.545	10.392	10.496		
	58.40	0.595	10.464	10.576		
	59.40	0.609	10.483	10.598		
	62.80	0.625	10.735	10.852		
	65.30	0.650	10.770	10.892		
	66.40	0.661	10.785	10.909		
9 7⁄8	66.90	0.668	10.795	10.920		
	67.50	0.678	10.809	10.935		
	68.00	0.694	10.831	10.960	+ 0.020 / - 0	
	68.90	0.700	10.839	10.969		
	51.00	0.450	11.424	11.513		
	55.50	0.495	11.441	11.538		
10 3⁄4	60.70	0.545	11.516	11.621		
	65.70	0.595	11.589	11.703		
	73.20	0.672	11.699	11.826		
10 7/8	72.00	0.656	11.803	11.927		
	60.00	0.489	12.455	12.522		
11 3/4	65.00	0.534	12.523	12.628		
	71.00	0.582	12.595	12.708		
11 7/8	62.00	0.500	12.597	12.696		
	/1.80	0.582	12.720	12.833		
	68.00	0.480	14.067	14.163		
	/2.00	0.514	14.120	14.222		
1001	//.00	0.550	14.1/5	14.284		
13 3/8	80.70	0.580	14.206	14.321		
	85.00	0.608	14.248	14.368		
	86.00	0.625	14.274	14.396		
10.5/	92.00	0.672	14.330	14.460		
13 %	88.20	0.625	14.525	14.648		
	93.00	0.650	14.937	15.065		
14	100.00	0.700	14.998	15.134		
	114.00	0.800	15.144	15.296		
	115.00	0.812	15.161	15.315		

22 Valuable Information

22.1 Pipe Calculations

22.1.1 Plain end weight

 $W_{pe} = K_m \times K_{wpe} \times (D-t)t$

Where:

D = specified pipe outside diameter in millimetres or inches

 $\rm K_m$ = mass correction factor, 1.000 for carbon steel; 0.989 for martensitic chromium steel

 $K_{_{\mu\mu\nu}}=mass$ per unit length conversion factor, 0.0246615 for SI units; 10.69 for USC units

t = specified pipe wall thickness

 $W_{\mbox{\tiny pe}}$ = calculated plan end mass per unit length, in kilograms per metre or pounds per foot

22.1.2 Maximum internal yield pressure (MIYP) 'burst pressure'

$$MIYP = \frac{2 \times SMYS \times t}{D} \times f$$

Where:

MIYP = Maximum internal yield pressure (psi)

SMYS = Specified minimum yield stress (psi)

t = specified pipe wall thickness (inch)

D = specified pipe outside diameter (inch)

f = factor for minimum allowed wall thickness (usually 0.875 = 87.5%)

22.1.3 Pipe body yield strength (PBYS)

PBYS = SMYS × Area

Where:

SMYS = Specified minimum yield stress (psi)

Areapipe = cross section area of pipe body (inch), calculated as $\pi/4$ (OD² – ID²)

OD = specified pipe outside diameter (inch)

ID = specified pipe inside diameter (inch)

22.1.4 Coupling bearing face load for JFE connections

Load bearing face = $0.9 \times SMYS \times (\pi/4 (CBD^2 - CED^2))$

Where:

SMYS = Specified minimum yield stress (psi)

CBD = Coupling diameter at base of bevel (20deg) or chamfer (45deg) (inch) ID = Coupling entry diameter (inch)

22.2 Field Calculations

22.2.1 Buoyed weight

$$W_{bouyed} = W_{air} \times (1 - \frac{\rho mud}{65.5})$$

Where:

W_{air} = string weight in air, calculated as length × linear mass (inch) pmud = density of mud (ppg)

22.2.2 Downhole hydrostatic pressure

$$P = 0.052 \times TVD \times W_{mu}$$

Where:

P = downhole hydrostatic pressure, external or internal (psi) TVD = downhole vertical depth of interest (ft) W_{mud} = density of mud (ppg)

22.2.3 Change in axial stress due to bending

Where:

 $\Delta \sigma_{bending}$ = 218.166 × α × OD

 $\Delta \sigma_{\text{bending}}$ = change in axial stress (psi), (+) on outside and (–) on inside α = bending dogleg in degrees per 100ft OD = outside diameter of pipe body (inch)

22.2.4 Additional load due to bending

Where:

where: $\Delta F_{bending} = Actual load applied due to bending (lbs)$ $<math>\sigma_{bending} = bending stress$

Area rise = cross section area of pipe body (inch), calculated as $\pi/4$ (OD² – ID²)

 $\Delta \sigma_{bending} = \sigma_{bending} \times Area_{pipe}$

OD = specified pipe outside diameter (inch)

ID = specified pipe inside diameter (inch)

22.2.5 Change in axial load due to internal pressure ('ballooning')

Where:

$$\Delta F_{axial} = P_{internal} \times \pi/4 \times d2$$

ΔF_{avial} = Change in axial load applied due to internal pressure (lbs)

P_{internal} = Internal pressure applied (psi)

d = specified pipe inside diameter (inch)

$$\Delta L = \frac{P_{load} \times L_{free}}{E \times Area_{pipe}}$$

Where:

 ΔL = Change in string length (ft)

 $\mathsf{P}_{\mathsf{load}}$ = Force applied (lbs) i.e. string weight

 L_{free} = Free length of pipe (ft)

E = Young's modulus (30x10⁶)

Area_{pipe} = cross section area of pipe body (inch), calculated as $\pi/4$ (OD² – ID²)

OD = specified pipe outside diameter (inch)

ID = specified pipe inside diameter (inch)

22.2.7 Pipe displacement

$$Displacement_{pipe} = Area_{pipe} \times 0.001237$$

Where:

Displacement_{pipe} = displacement of pipe (bbl/ft)

Area_{nine} = cross section area of pipe body (inch), calculated as $\pi/4$ (OD² – ID²)

Capacity_{pipe} = $(ID_{pipe})^2 \times 0.000971439$

OD = specified pipe outside diameter (inch)

ID = specified pipe inside diameter (inch)

22.2.8a Pipe capacity

Where:

 $\begin{aligned} & \text{Capacity}_{\text{pipe}} = \text{capacity of pipe string (bbl/ft)} \\ & \text{ID}_{\text{pipe}} = \text{ID} = \text{specified pipe inside diameter (inch)} \end{aligned}$

22.2.8b Pipe capacity

Where:

Capacity_{pipe} = (Area_{pipelD})² × 0.001237

· · ·

 $\begin{aligned} \text{Capacity}_{\text{pipe}} &= \text{capacity of pipe string (bbl/ft)} \\ \text{Area}_{\text{pipelD}} &= \text{calculated as } \pi \times (\text{ID}_{\text{pipe}} / 2)^2 \text{ (inch)} \end{aligned}$

22.3 Other

22.3.1 Calculating surface finish values

Where:

 $\rm R_z$ = maximum peak to valley variation on surface substrate, i.e. max value - min value

 $R_a = arithmetic average deviation from nominal surface, i.e. Ra = R_z / 7.2$

22.4 Common conversion factors

		lb _m	=	0.4536	kg
		kg	=	2.2046	lb
		Short ton	=	2000	lbs
Mass	1	Short ton	=	0.9072	MT
muoo		MT	=	1,1023	Short Ton
		lb/ft	=	1 4882	ka/m
		ka/m	=	0.672	lb/ft
		Ng/III		0.072	юл
		in ²	=	645.16	mm ²
Aroa	4	mm ²	=	0.00155	in²
AlGa	<u>'</u>	ft²		0.0929	m²
		m²		10.7639	ft²
		gallon	=	231	IN ³
		gallon	=	0.0038	
		gallon	=	3.7854	litre
		bbl	=	42	gal
		bbl	=	158.987	litre
		litre	=	61.0237	in ³
Volume	1	litre	=	0.2642	gal
VUIUIIIE	'	m ³	=	6.2899	bbl
		m ³	=	264.172	gal
		in ³	=	0.0164	litre
		ft3	=	1728	in ³
		ft ³	=	28.317	litre
		ft ³	=	0.0283	m ³
		ft ³	=	7.4805	gal
				1	
	1	in	=	25.4	mm
		mm	=	0.03937	in
l onath		cm	=	0.3937	in
Lengin		ft	=	0.3048	m
		m	=	39.37	in
		m	=	3.2808	ft
		lh.	-	1 1 1 8 2	N
		N	_	0.2248	lb
Force	1	top	_	0.2240	
			_	0.090	KN
		KIN	-	224.01	IDf
		ft·lb	=	1.3558	N⋅m
Torque	1	N∙m	=	0.7376	ft·lb
		N∙m	=	8.8508	in·lb
				14.000	n-!
		atm	=	14.696	psi
		atm	=	101.325	кРа
		MPa	=	10	bar
		MPa	=	145.038	psi
_		kPa	=	0.145	psi
Pressure	1	psi	=	6.8948	kPa
		psi	=	0.0069	MPa
		psi	=	0.0689	bar
		bar	=	14.5038	psi
		bar	=	0.1	MPa
		bar	=	100	kPa
		lb /!		0.1100	les //
		ib/gai	=	0.1198	Kġ/I
		ib/gal	=	119.826	Kg/m ³
Nensity	1	lb/ft ³	=	16.018	kg/m ³
Donony	·	kg/l	=	8.3454	lb/gal
		kg/m ³	=	0.0083	lb/gal
		kg/m ³	=	0.0624	lb/ft ³

